
The Vision Workbook:
A User’s Guide to the

NASA Vision Workbench v1.0

Matthew D. Hancher
Michael J. Broxton

Laurence J. Edwards

Intelligent Systems Division
NASA Ames Research Center

DRAFT

January 7, 2010

2

Acknowledgements

Many people have contributed to making this first Vision Workbench open-source release a reality.
Thanks to Terry Fong, Kalmanje KrishnaKumar, and Dave Korsmeyer in the Intelligent Systems
Division at NASA Ames for supporting us in this research and allowing us to pursue our crazy
dreams. Thanks to Larry Barone, Martha Del Alto, Robin Orans, Diana Cox, Kim Chrestenson,
and everyone else who helped us navigate the NASA open source release process. Thanks to Randy
Sargent, Matt Deans, Liam Pedersen, and the rest of the Intelligent Robotics Group at Ames for
lending their incredible expertise and being our guinea pigs time and again. Thanks to our interns—
Kerri Cahoy, Ian Saxton, Patrick Mihelich, Joey Gannon, and Aaron Rolett—for bringing many
exciting features of the Vision Workbench into being. Finally, thanks to all our users, past, present
and future, for making software development enjoyable and worthwhile.

Portions of this work were funded by the Mars Critical Data Products Initiative and the Explo-
ration Technology Development Program.

3

4

Contents

1 Introduction 7

2 Getting Started 11
2.1 Obtaining the Vision Workbench . 11
2.2 Building the Vision Workbench . 12
2.3 A Trivial Example Program . 13
2.4 Configuring the Build System . 15

3 Working with Images 19
3.1 The ImageView Class . 19

3.1.1 The Basics . 19
3.1.2 The Standard Pixel Types . 20
3.1.3 Copying ImageViews . 22
3.1.4 ImageView as a STL-Compatible Container 22
3.1.5 Image Planes . 23

3.2 Image File I/O . 23
3.2.1 Reading and Writing Image Files . 23
3.2.2 More Sophisticated File I/O . 24

3.3 Manipulating Images . 25
3.3.1 Simple Image Manipulation . 25
3.3.2 Image Algorithms . 27

4 Image Processing 31
4.1 Image Filtering . 31

4.1.1 The Special-Purpose Filters . 31
4.1.2 Edge Extension Modes . 32
4.1.3 General Convolution Filtering . 33

4.2 Doing Math with Images . 34
4.2.1 Image Operators . 34
4.2.2 Mathematical Functions . 35

4.3 Vectors and Matrices . 36
4.3.1 Vectors and Vector Operations . 36
4.3.2 Matrices and Matrix Operations . 39

4.4 Transforming or Warping Images . 42
4.4.1 Transform Basics . 42
4.4.2 Creating a New Transform . 44
4.4.3 Advanced Techniques . 46

4.5 Pixel Mask . 47

5

6 CONTENTS

5 Vision Workbench Type System 49
5.1 The Scalar Types . 49
5.2 Type Deduction . 50
5.3 The Pixel Types . 51

6 Core Module 55
6.1 Vision Workbench Exceptions . 55
6.2 The System Cache . 56

6.2.1 Example: Caching std::ofstream . 56
6.2.2 Performance Considerations and Debugging 58

6.3 The System Log . 58
6.3.1 Writing Log Messages . 59
6.3.2 The Log Configuration File . 59
6.3.3 System Log API . 60

7 Camera Module 63
7.1 The Pinhole Camera Model . 63

7.1.1 Perspective Projection . 63
7.2 The Camera Model Base Class . 65
7.3 Built-in Camera Models . 66

7.3.1 Pinhole Cameras . 66
7.3.2 Linescan Cameras . 67

7.4 Tools for Working With Camera Images . 68
7.4.1 Inverse Bayer Pattern Filtering . 68
7.4.2 Exif Exposure Data . 68

8 Mosaic Module 73
8.1 ImageComposite and Multi-Band Blending . 73
8.2 ImageQuadTreeGenerator . 75

9 High Dynamic Range Module 79
9.1 Merging Bracketed Exposures . 79

9.1.1 Converting LDR Images to an HDR Image 81
9.1.2 The Camera Response Curves . 81

9.2 Tone Mapping . 82
9.2.1 Global Operators . 82
9.2.2 Local Operators . 84

9.3 Command Line Tools . 84
9.4 Other Resources . 84

10 Cartography Module 89
10.1 Software Dependencies . 89
10.2 The GeoReference Class . 90

10.2.1 The Datum . 90
10.2.2 The Affine Transform . 90
10.2.3 Putting Things Together . 91

10.3 Geospatial Image Processing . 91
10.3.1 The GeoTransform Functor . 91

CONTENTS 7

10.4 Georeferenced File I/O . 91
10.4.1 DiskImageResourceGDAL . 91

11 Interest Point Module 93
11.1 Scale Space Methods . 94
11.2 Measuring Interest . 94
11.3 The Interest Point Detector Classes . 94
11.4 Flow of Data . 95
11.5 Generating Descriptors . 95
11.6 Matching . 95
11.7 RANSAC . 95
11.8 Pre-built Tools . 97

12 Stereo Module 101
12.1 Disparity Maps . 101
12.2 Stereo Correlation . 103

12.2.1 Optimized Correlator . 105
12.2.2 Pyramid-based Search Refinement . 105

12.3 Subpixel Refinement . 106
12.3.1 Parabola Fitting . 107
12.3.2 Affine-adaptive Subpixel Refinement . 107

12.4 Point Clouds . 107
12.5 Command Line Tool . 107

13 Tools 111
13.1 colormap . 111
13.2 correlate . 111
13.3 hillshade . 112
13.4 geoblend . 113
13.5 georef . 113
13.6 image2qtree . 114
13.7 ipfind . 116
13.8 ipmatch . 117
13.9 slopemap . 118

14 Advanced Topics 121
14.1 Lazy Evaluation: Working with Views . 121

14.1.1 The View Concept . 121
14.2 Working with Shallow Views . 125
14.3 Efficient Algorithms and pixel_accessor . 125
14.4 Rasterization, Efficiency, and Tiled Computation 125
14.5 Generic Image Buffers . 125
14.6 The File I/O System . 125
14.7 Frequency-Domain Image Processing . 125

15 A Vision Workbench Cookbook 127
15.1 Removing Camera Lens Distortion . 128

8 CONTENTS

Chapter 1

Introduction

This document is designed to be a gentle introduction to programming with the NASA Vision
Workbench, a C++ image processing and machine vision library. The Vision Workbench was
developed through a joint effort of the Intelligent Robotics Group (IRG) and the Adaptive Control
and Evolvable Systems Group (ACES) within the Intelligent Systems Division at the NASA Ames
Research Center in Moffett Field, California. It is distributed under the NASA Open Source
Agreement (NOSA) version 1.3, which has been certified by the Open Source Initiative (OSI). A
copy of this agreement is included with every distribution of the Vision Workbench in a file called
COPYING.

You can think of the Vision Workbench as a “second-generation” C/C++ image processing
library. It draws on the authors’ experiences over the past decade working with a number of
“first-generation” libraries, such as OpenCV and VXL, as well as direct implementations of image
processing algorithms in C. We have tried to select and improve upon the best features of each of
these approaches to image processing, always with an eye toward our particular range of NASA
research applications. The Vision Workbench has been used within NASA for a wide range of
image processing tasks, including alignment and stitching of panoramic images, high-dynamic-range
imaging, texture analysis and recognition, lunar and planetary map generation, and the production
of 3D models from stereo image pairs. A few examples of image data that has been processed with
the Vision Workbench are show in Figure 1.1.

The Vision Workbench was designed from the ground up to make it quick and easy to produce
efficient implementations of a wide range of image processing algorithms. Consider this example:

background_image += 0.1 * (source_image - background_image);

Hopefully it is reasonably clear what this line of code does, even if you don’t know what an IIR
filter like this is good for. Higher level functions have similarly simple interfaces. For example, to
apply a Gaussian filter to an image with a sigma of 3 pixels you can simply say:

image = gaussian_filter(image, 3);

In many cases like these, code written using the Vision Workbench is significantly smaller and more
readable than code written using more traditional approaches.

At the core of the Vision Workbench is a rich set of template-based image processing data
types representing pixels, images, and operations on those images, as well as mathematical entities
(like vectors and geometric transformations) and image file I/O. On top of this core the Vision
Workbench also provides a number of higher-level image processing and machine vision modules,

9

10 CHAPTER 1. INTRODUCTION

(a)

(b) (c)

(d)

Figure 1.1: Examples of image data processed with the help of the Vision Workbench. (a) A Martian
terrain map generated from stereo satellite imagery. (b,c) Original and high-dynamic-range image
mosaics from a NASA field test. (d) A lunar base map generated from the Clementine data set.

11

providing features including camera geometry modeling, high-dynamic-range imaging, interest point
detection and matching, image mosaicing and blending, and geospatial data management.

That said, the Vision Workbench is not for everyone, and in particular it is not intended as a
drop-in replacement for any existing image processing toolkit. It is specifically designed for image
processing in the context of machine vision, so it lacks support for things like indexed color palettes
that are more common in other areas. It also lacks a number of common features that the authors
have simply not yet had a need for, such as morphological operations. If you encounter one of these
holes while using the Vision Workbench please let us know: if it is an easy hole to fill we may be able
to do so quickly. Finally, there are many application-level algorithms, such as face recognition, that
have been implemented using other computer vision systems and are not currently provided by the
Vision Workbench. If one of these meets your needs there is no compelling reason to re-implement
it using the Vision Workbench instead. On the other hand, if no existing high-level tool solves your
problem then you may well find that the Vision Workbench provides the most productive platform
for developing something new.

Since this is the first public release of the Vision Workbench, we thought we should also provide
you with some sense of the direction the project is headed. It is being actively developed by a small
but growing team at the NASA Ames Research Center. A number of features are currently being
developed internally and may released in the future, including improved mathematical optimization
capabilities, a set of Python bindings, and stereo image processing tools. Due to peculiarities of the
NASA open-source process we cannot provide snapshots of code that is under development and not
yet approved for public release. If you have a specific use for features that are under development,
or in general if you have suggestions or feature requests, please let us know. Knowing our users’
needs will help us prioritize our development and, in particular, our open-source release schedule.

We hope that you enjoy using the Vision Workbench as much as we have enjoyed developing
it! If you have any questions, suggestions, compliments or concerns, please let us know. Contact
information is available at the bottom of the README file included with your distribution.

12 CHAPTER 1. INTRODUCTION

Chapter 2

Getting Started

This chapter describes how to set up and start using the Vision Workbench. It explains how to
obtain the Vision Workbench and its prerequisite libraries, how to build and install it, and how to
build a simple example program. This chapter does not discuss how to program using the Vision
Workbench. If that’s what you’re looking for then skip ahead to Chapter 3.

2.1 Obtaining the Vision Workbench

Most likely if you are reading this document then you already know where to obtain a copy of the
Vision Workbench sources if you haven’t obtained them already. However, if not, a link to the most
up-to-date distribution will always be available from the NASA Ames open-source software website,
at opensource.arc.nasa.gov.

In addition to obtaining the Vision Workbench, you will also need to obtain and install whatever
pre-requisite libraries you will need. The only strict requirement is the Boost C++ Libraries,
a set of extensions to the standard C++ libraries that is available from www.boost.org. Many
modern Linux systems come with some version of Boost already installed, generally in the directory
/usr/include/boost. The Vision Workbench has been tested with Boost versions 1.32 and later.

Other libraries are required only if you want to use particular features of the Vision Workbench.
A summary of the various libraries that the Vision Workbench will detect and use if present is given
in Table 2.1. It lists the particular Vision Workbench module that uses the library, whether it is
required or optional for that module, and where the library can be obtained. Details of each of
the modules and the features that are enabled by each dependency are given in the corresponding
sections of this book. If you are just starting out with the Vision Workbench, it is generally fine
to begin only with Boost. You can always go back and rebuild the Vision Workbench with support
for additional features later if you discover that you need them.

One dependency that is worth discussing briefly is LAPACK, which provides Vision Workbench
with a computational linear algebra back end. LAPACK is a comprehensive and widely used linear
algebra support library in the public domain. LAPACK also require the Basic Linear Algebra
Subroutines (BLAS) library, which is usually bundled with LAPACK.

The basic matrix and vector algebra in the Math module does not depend on LAPACK and
BLAS, however the routines in <vw/Math/LinearAlgebra.h> will only be built if LAPACK is
detected by the build system. For your convenience, we provide a stand-alone LAPACK and BLAS
distribution on the Vision Workbench web page. This distribution has been tested with the Vision
Workbench, so we recommend its use if you are installing LAPACK for the first time. However,
other versions of LAPACK and BLAS that come pre-installed on your system will probably work

13

14 CHAPTER 2. GETTING STARTED

Name Used By Source

Boost All http://www.boost.org/

LAPACK Portions of Math, HDR See note in Section 2.1
PNG FileIO (opt.) http://www.libpng.org/

JPEG FileIO (opt.) http://www.ijg.org/

TIFF FileIO (opt.) http://www.libtiff.org/

OpenEXR FileIO (opt.) http://www.openexr.com/

PROJ.4 Cartography (req.) http://www.remotesensing.org/proj/

GDAL Cartography (opt.) http://www.remotesensing.org/gdal/

Table 2.1: A summary of Vision Workbench dependencies.

just as well. In particular, Mac OS X users do not need to install LAPACK; machine optimized
linear algebra support is provided by Apple’s veclib framework on Mac OS X. Remember to add
the -framework veclib flag when linking your application against the Vision Workbench if you
are using the functions in <vw/Math/LinearAlgebra.h> on the mac platform.

2.2 Building the Vision Workbench

If you are using a UNIX-like platform such as Linux or Mac OS it is generally straightforward
to build the Vision Workbench once you have installed any necessary libraries. First unpack the
distribution, go to the distribution’s root directory, and configure the build system by running
“./configure”. This script will examine your machine to determine what build tools to use and
what libraries are installed as well as where they are located. Near the end of its output it will list
whether or not it was able to find each library and which Vision Workbench modules it is going to
build. You should examine this output to confirm that it was able to find all the libraries that you
had expected it to. If not then you may need to configure the build system to search in the right
places, as discussed in Section 2.4.

Assuming the output of the configure script looks good, you can now proceed to build the
Vision Workbench itself by running “make”. Most of the Vision Workbench is header-only, so
“building” the Vision Workbench should be relatively quick. Once the build is complete, confirm
that things are working properly by building and running the unit tests by typing “make check”.
If there are no errors, the final step is to install the Vision Workbench headers, library, and sample
programs using “make install”. By default the installation location is the directory /usr/local,
so you will need to obtain the necessary privileges to write to this directory using a command such
as su or sudo. If you do not have administrator privileges on you computer then see Section 2.4 for
information on how to specify an alternative installation directory.

Building the Vision Workbench under Windows is possible, but it is not currently automatically
supported. The easiest thing to do is to include the .cc files from the Vision Workbench modules
that you want to use directly in your own project file. You will of course still need to install
the Boost libraries as well as any other libraries you want to use. Pre-built Windows versions
of a number of libraries, such as the JPEG, PNG, and TIFF libraries, are available online from
the GnuWin32 project at gnuwin32.sourceforge.net. You will need to configure your project’s
include file and library search paths appropriately. Also be sure to configure your project to define
the preprocessor symbol NOMINMAX to disable the non-portable Windows definitions of min() and
max() macros, which interfere with the standard C++ library functions of the same names.

2.3. A TRIVIAL EXAMPLE PROGRAM 15

1 // __BEGIN_LICENSE__
2 // Copyright (C) 2006, 2007 United States Government as represented by
3 // the Administrator of the National Aeronautics and Space Administration.
4 // All Rights Reserved.
5 // __END_LICENSE__
6
7
8 #include <iostream>
9 #include <vw/Image.h>

10 #include <vw/FileIO.h>
11
12 int main(int argc, char *argv[]) {
13 try {
14 VW_ASSERT(argc==3, vw::ArgumentErr() << "Invalid command-line args.");
15 vw::ImageView<vw::PixelRGBA<float> > image;
16 read_image(image, argv[1]);
17 write_image(argv[2], image);
18 }
19 catch(vw::Exception& e) {
20 std::cerr << "Error: " << e.what() << std::endl;
21 std::cerr << "Usage: vwconvert <source> <destination>" << std::endl;
22 return 1;
23 }
24 return 0;
25 }

Listing 1: [vwconvert.cc] A simple demonstration program that can copy image files and convert
them from one file format to another.

2.3 A Trivial Example Program

Now that you’ve built and installed the Vision Workbench let’s start off with a simple but fully-
functional example program to test things out. The full source code is shown in Listing 1. You
should be able to obtain an electronic copy of this source file (as well as all the others listed in this
book) from wherever you obtained this document. For now don’t worry about how this program
works, though we hope it is fairly self-explanatory. Instead, just make sure that you can build and
run it successfully. This will ensure that you have installed the Vision Workbench properly on your
computer and that you have correctly configured your programming environment to use it.

The program reads in an image from a source file on disk and writes it back out to a destination
file, possibly using a different file format. When reading and writing images, the Vision Workbench
infers the file format from the file extension of the filename. This example program takes the source
and destination filenames as two command-line arguments. For example, to convert a JPEG image
called image.jpg in the current directory into a PNG image you might say:

vwconvert image.jpg image.png

Note that exactly what image file formats are support will depend on what file format libraries you
have installed on your system.

16 CHAPTER 2. GETTING STARTED

In order to to build this program you will need to configure your compiler to find the Vision
Workbench headers and then configure your linker to find not only the Vision Workbench libraries
but also all of the libraries that the Vision Workbench in turn requires.

Some Vision Workbench header files include boost headers, and the compiler needs to be able
to find these files when you build your application. No additional configuration is necessary if
boost is installed in a stardard system directory, however for non-standard installations, you will
need to direct the compiler (usually using the -I flag) to the right directory. Note that the Vision
Workbench’s dependency on boost is unique in this regard; you do not normally need to configure
the compiler to find header files for Vision Workbench third party library dependencies.

Keeping track of nested library dependencies like this can be difficult. The Vision Workbench
addresses this problem using the GNU libtool utility, and we suggest that you use it too. All Vi-
sion Workbench libraries are built with an accompanying libvw<module_name>.la file that encodes
dependency information that libtool later uses to pull in all required library dependencies auto-
matically. It’s easy to use, and it lets you take advantage of the work that the Vision Workbench
build system does to locate your libraries and sort out their dependencies.

Listing 2 shows a sample Makefile that demonstrates how to build a Vision Workbench appli-
cation using libtool, among other things. If you already have your own Makefile or other build
system, the important section to look at is the section titled “Linking rule”. It demonstrates how
to invoke libtool to build a program: invoke the compiler as you usually would, but prefix the
command with “libtool --mode=link”. This will make libtool interpret the command line it
has been given as a linking command, filling in all the specifics about library dependencies. In this
case it will recognize the -lvw option, and will expand it to include references to all the libraries
upon which the Vision Workbench depends.

You can test this by creating an empty directory and copying the files vwconvert.cc and
Makefile.example into it, renaming the latter as simply Makefile. (Both of these files are included
in the Vision Workbench source distribution in the directory docs/workbook.) You should then be
able to build the program by running “make”. This assumes that you have libtool installed on
your computer. If not, don’t worry: the Vision Workbench includes a copy of the libtool script in
the base directory of the source distribution. If you see an error message suggesting that libtool
cannot be found you may need to modify your Makefile so that the LIBTOOL variable explicitly
points to this file.

If you choose not to use libtool then you will need to manually ensure that all the necessary
dependencies are linked in to your program. The easiest way to be sure that you aren’t missing any is
to look inside the same files that libtool would use to generate the list, the .la files. For example,
the vw library that is included by the -lvw option points to the file lib/libvw.la underneath
whatever directory you installed the Vision Workbench in. This is a human-readable file that lists
this library’s dependencies, among other things. If any of these dependency libraries are themselves
.la files then you will need to examine them in turn to find all the recursive dependencies. As you
can imagine, this is a cumbersome process, and we suspect that in then end you’ll be much happier
using libtool directly instead.

Using libtool on Mac OS X

Users of Mac OS X should be aware that the libtool command available in this environ-
ment is different than the GNU libtool we are discussing here. On these systems, you will need
to use the glibtool command or use the libtool script in the root of the Vision Workbench
source distribution directory.

2.4. CONFIGURING THE BUILD SYSTEM 17

HDR Mosaic Cartography Application-specific Algorithms

Image Low-level Image Processing/MathMath
Core Programming Utilities

Camera High Level PrimitivesFileIO

Figure 2.1: Vision Workbench inter-module dependencies. Module in this figure depend on those be-
neath them. These dependencies split the modules into four general classes of increasing complexity
and sophistication. The modules surrounded by the bold outline are considered the “foundation”
modules that are part of the most basic Vision Workbench distribution.

2.4 Configuring the Build System

The Vision Workbench build system offers a variety of configuration options that you provide
as command-line flags to the configure script. We’ll discuss a few of the most important op-
tions here, but for a complete list you can run “./configure --help”. As an alternative to
specifying command-line flags every time, you may instead create a file called config.options
with your preferences in the base directory of the Vision Workbench repository. A file called
config.options.example is provided that you can copy and edit to your liking. Note that none
of this has any impact on Visual Studio users, who must instead configure their projects by hand.

The single most important option is the --with-paths=PATHS flag, where you replace PATHS
with a whitespace-separated list of paths that the build system should search when looking for
installed libraries. For example if you specify the option --with-paths=/foo/bar then it will
search for header files in /foo/bar/include, library files in /foo/bar/lib, and so on. The default
search path includes a number of common locations for user-installed libraries, such as /usr/local,
$(HOME)/local, and /sw. The PKG_PATHS configuration file variable has the same effect as this
option.

The next most important options have the form --enable-module-foo[=no], where foo is
replaced by the lower-case name of a module such as mosaic or hdr. This allows you to control
whether or not certain modules are built. Disabling modules that you do not use can speed up
compilation and testing time, which is especially useful if you are making changes to the Vision
Workbench source and need to recompile often. The corresponding configuration file variables have
the form ENABLE_MODULE_FOO, in all-caps, and are set to either yes or no.

It is worth mentioning that the Vision Workbench has several inter-module dependencies that
you should take into account when enabling and disabling modules. These are shown in Figure 2.4.

Two handy options, --enable-optimize and --enable-debug, determine the compiler options
used when building the few library files. You can again specify an optional argument of the form
=no to disable the corresponding feature, and you can also specify a particular optimization level in
the same manner. For example, if you want to make it as easy as possible to debug Vision Work-

18 CHAPTER 2. GETTING STARTED

bench code using a debugger you might use --enable-optimize=no --enable-debug to disable
all optimizations and include debugging symbols. The corresponding configuration file variables
are ENABLE_OPTIMIZE and ENABLE_DEUBG. Keep in mind that since most Vision Workbench code
is header-only you should remember to configure your own project similarly or you may not notice
any difference. For normal non-debugging use, we strongly recommend that you enable moderate
compiler optimization; much of the heavily templatized and generic Vision Workbench code requires
basic optimizations such as function inlining to achieve a reasonable level of performance.

Finally, to specify that the build system should install the Vision Workbench someplace other
than /usr/local, specify the path using the --prefix=PATH option. The corresponding configura-
tion file variable is, of course, called PREFIX.

2.4. CONFIGURING THE BUILD SYSTEM 19

1 # The Vision Workbench installation prefix (/usr/local by default)
2 VWPREFIX = /usr/local
3
4 # If you don’t have libtool installed, you can specify the full
5 # path to the libtool script in the base directory of your Vision
6 # Workbench source tree, e.g. $(HOME)/VisionWorkbench-1.0/libtool
7 LIBTOOL = libtool
8
9 # Compilation flags:

10 # -O3 turns on optimization, which you should almost always do
11 # -g enables debugging support
12 # -Wall turns on all compiler warnings
13 CXXFLAGS = -I$(VWPREFIX)/include -O3 -g -Wall
14
15 # Boost:
16 # The Vision Workbench header files require the boost headers. If
17 # boost is installed in a non-standord location, you may need
18 # to uncomment this line and insert the path to the boost headers.
19 # CXXFLAGS += -I<path to boost include dir>
20
21 # Linking flags:
22 # -lvw includes the Vision Workbench core libraries
23 LDFLAGS = -L$(VWPREFIX)/lib -lvw
24
25 # Object files:
26 # List the object files needed to build your program here.
27 OBJECTS = vwconvert.o
28
29 # Linking rule:
30 # Duplicate and modify this rule to build multiple programs.
31 vwconvert: $(OBJECTS)
32 $(LIBTOOL) --mode=link $(CXX) $(LDFLAGS) -o $@ $^
33
34 # Clean-up rule:
35 clean:
36 rm -f *.o *~ \#*

Listing 2: [Makefile.example] An example Makefile that shows how to build a Vision Workbench
program using libtool.

20 CHAPTER 2. GETTING STARTED

Chapter 3

Working with Images

This chapter is designed to be a first introduction to programming using the Vision Workbench.
It describes images, pixels, color spaces, image file I/O, and basic image manipulation, setting the
stage for the fundamental image processing operations described in Chapter 4.

3.1 The ImageView Class

The ImageView class is the centerpiece of the Vision Workbench in most applications. Simply put,
it represents an image in memory. The class is similar to related classes that appear in other C++
computer vision libraries, including VXL, GIL, and VIGRA, so if you are already familiar with one
of those libraries you should find nothing too foreign here.

3.1.1 The Basics

An ImageView represents a two-dimensional rectangular array of data, such as an image of pix-
els. It is actually a class template, and when you declare an ImageView object you specify the
particular kind of data that it should contain. For example, you can make an ImageView of RGB
(red/green/blue) pixels to represent a full-color image or an ImageView of vectors to represent a
vector field. You specify the pixel type as a template parameter to the ImageView class like this:

ImageView<PixelRGB<float32> > my_image;

In this case we’ve made a full-color RGB image. Notice that PixelRGB is itself a template: here
we’ve specified that we want each channel of each RGB pixel to be stored as a 32-bit floating-point
number. All of the core pixel types in the Vision Workbench are themselves templates like this.

The ImageView class is defined in the C++ header file <vw/Image/ImageView.h>, and the
standard pixel types are defined in the header <vw/Image/PixelTypes.h>. Thus, for the above line
of code to compile you must include those two headers at the top of your program. (Alternatively,
all of the header files relating to basic image manipulation are collected together in the convenience
header <vw/Image.h>.) Furthermore, all of the core classes and functions of the Vision Workbench
are defined in the C++ namespace vw. One way to use them is to be fully specific:

vw::ImageView<vw::PixelRGB<vw::float32> > my_image;

The other way, which may be simpler for new users, is to bring the entire vw namespace into the
global scope by saying

21

22 CHAPTER 3. WORKING WITH IMAGES

using namespace vw;

at the top of your program after you’ve included the necessary headers. For brevity, in the examples
in this book we will often assume that you have included the necessary headers and we will omit
explicit references to namespace vw. The exception to this is the complete programs, such as
vwconvert.cc (Listing 1, above), which are intended to be fully self-contained.

By default the dimensions of an ImageView are zero, which may not be what you want. One
option is to specify an image’s dimensions when we construct it:

ImageView<PixelRGB<float> > my_image(320, 240);

This creates an image with 320 columns and 240 rows. If we ever want to set or change the size of
an image later on in the code we can use the set_size() method:

my_image.set_size(640, 480);

You can also find out how many columns or rows an image has using the cols() and rows()
methods, respectively:

int width = my_image.cols();
int height = my_image.rows();

Note that when you call set_size() with new image dimensions the Vision Workbench allocates a
new chunk of memory of the appropriate size. This is a destructive operation: any old data is not
copied into the new buffer, and the old buffer will be automatically deallocated if no other objects
are using it.

Once you’ve made an ImageView, the simplest way to access a particular pixel is by indexing
directly into it:

PixelRGB<float> some_pixel = my_image(x, y);

In this example we’ve assumed that x and y are integer variables with the desired pixel’s coordinates.
For a less trivial example, one way to fill our image with the color red would be to loop over all the
rows and columns, setting each pixel at a time:

PixelRGB<float> red(1.0, 0.0, 0.0);
for (int y=0; y<my_image.rows(); ++y)
for (int x=0; x<my_image.cols(); ++x)
my_image(x,y) = red;

This is not the fastest way to access the pixels of an image, but it is arguably the most flexible.
(Later we will learn about much simpler ways to fill an image with a single color.)

3.1.2 The Standard Pixel Types

The Vision Workbench provides a number of standard pixel types that you can use to manipulate the
most common sorts of images. We’ve already encountered PixelRGB, the standard RGB pixel type.
As we mentioned earlier, this is a template class whose template parameter specifies the underlying
numeric data type used to store each channel of the pixel. This is called the pixel’s channel type. The
Vision Workbench defines convenient platform-independent names for the standard channel types,
so that you never have to worry about whether int or short is 16 bits wide on your platform.

3.1. THE IMAGEVIEW CLASS 23

Type Description Notes

int8 Signed 8-bit integer
uint8 Unsigned 8-bit integer Common for low-dynamic-range imaging
int16 Signed 16-bit integer
uint16 Unsigned 16-bit integer
int32 Signed 32-bit integer
uint32 Unsigned 32-bit integer
int64 Signed 64-bit integer
uint64 Unsigned 64-bit integer
float32 32-bit floating point Common for high-dynamic-range imaging
float64 64-bit floating point

Table 3.1: The standard Vision Workbench channel types.

Type Description Channels

PixelGray<T> Grayscale Grayscale value (v)
PixelGrayA<T> Grayscale w/ alpha Grayscale value (v), alpha (a)
PixelRGB<T> RGB Red (r), green (g), blue (b)
PixelRGBA<T> RGB w/ alpha Red (r), green (g), blue (b), alpha (a)
PixelHSV<T> HSV Hue (h), saturation (s), value (v)
PixelXYZ<T> XYZ CIE 1931 X (x), Y (y), and Z (z) channels
Vector<T,N> An N-dimensional vector N vector components

T A unitless scalar N/A

Table 3.2: The standard Vision Workbench pixel types. The channel type T should generally be
one of the types from Table 3.1.

These Vision Workbench channel types are listed in Table 3.1. These are the only channel types
with which the Vision Workbench has been tested, so it is best to stick to these unless you have a
compelling reason not to.

The standard pixel types are listed in Table 3.2. The first four, used for grayscale and RGB
images with and without alpha channels, are the most common. (For those of you who are unfamiliar
with the term, an alpha channel is used to represent the opacity of a pixel. For the rest of you, note
that the Vision Workbench generally stores alpha pixels in pre-multiplied form.)

Each of the channels in a pixel can be accessed by indexing into it directly, as in my_pixel(i)
or my_pixel[i]. The order of the channels is the same as the order in which they appear in the
name of the type. If you know a particular pixel’s type you can also access it’s channels by name,
so for example my_rgb_pixel.r() access an RGB pixel’s red channel. (Note that grayscale values
are accessed via v(), for “value”.)

When you are writing Vision Workbench programs you may often find yourself working with
only one pixel type at a time. In this case it can be convenient to place a typedef near the top of
your file defining a convenient shorthand:

typedef vw::ImageView<vw::PixelRGB<float32> > Image;

This way you can refer to your RGB image type by the much shorter identifier Image. In the
remainder of this book when we say Image you may assume that you may substitute the ImageView
class type that is most appropriate for your application.

24 CHAPTER 3. WORKING WITH IMAGES

Standard conversions are provided among all the RGB and grayscale pixel types, and also
between PixelRGB and the special color types PixelHSV and PixelXYZ. The ImageView class can
take advantage of these pixel conversions to perform color space conversion on entire images. For
example, images are generally stored on disk in an RGB color space but it is sometimes helpful to
convert them to HSV for processing. This is easy with the Vision Workbench:

ImageView<PixelRGB<float> > rgb_image;
read_image(rgb_image, filename);
// Convert the RGB image to HSV:
ImageView<PixelHSV<float> > hsv_image = rgb_image;

(We’ll have more to say about read_image() shortly, but it does what you’d expect.) Later you
could assign the HSV image back to an RGB image prior to saving it to disk.

3.1.3 Copying ImageViews

In the Vision Workbench, ImageView objects have shallow copy semantics. That is, when you copy
an ImageView you’re making a new ImageView that points to the same data, rather than a new
copy of the data. This is a relatively inexpensive operation, which makes it perfectly reasonable
to do things like construct a std::vector of ImageViews. The underlying image data is reference-
counted, and when the last ImageView stops using a block of image data it is deallocated.

Though this behavior can be quite powerful, it may not always be what you want. If you ever
need to make a duplicate of an ImageView, so that you can modify one without affecting the other,
you should use the copy() function found in <vw/Image/Algorithms.h>.

// This makes a shallow copy, pointing to the same:
Image new_image_1 = my_image;
// This makes a deep copy, pointing to new, identical data:
Image new_image_2 = copy(my_image);

It is important to understand that this shallow copy behavior only applies when the source and
destination image types—and in particular the source and destination pixel types—are identical.
If the pixel types are different then you are not actually making a copy in the C++ sense of the
word but are instead assigning one image view to another. In the above example involving RGB
and HSV images, even though the source and destination objects are both ImageViews they in fact
have different types because they have different template parameters. Therefore the data is copied
deeply while being converted to the new pixel type. This holds even if the source and destination
pixel types differ only in their underlying channel type.

3.1.4 ImageView as a STL-Compatible Container

An ImageView can be thought of as a container of pixels, and in fact you can use it as a standard
C++ container class. The iterator type is, as expected, called ImageView<T>::iterator, and it
allows you to access each of the pixels of an image one at a time. The begin() and end() methods
return iterators pointing to the first and one-past-the-last pixels, respectively. The first pixel is
located at position (0, 0), and incrementing the iterator advances to the next column. After it
passes through the last column, the iterator wraps around to the beginning of the next row.

This C++ Standard Template Library (STL) compliant iterator exists mainly to allow you
to take advantage of the many algorithms provided by the STL that operate on containers. For
example, you can use sort() to sort all of the pixel values in an image.

3.2. IMAGE FILE I/O 25

std::sort(my_image.begin(), my_image.end());

That particular example may be more cute than it is useful, but others occur more frequently.
For instance, you can use std::count() to count the number of pixels with a particular value, or
std::replace() to replace all pixels that have one value with another.

3.1.5 Image Planes

The ImageView class also supports another feature found in many other image processing libraries:
image planes. Like duct tape, planes are the wrong solution to almost every problem, and we
discourage their use. Basically, planes allow you to store some number of two-dimensional pixel
arrays of the same size (“planes”) together in a single object. Planes are different from channels
in that the number and meaning the planes is not specified at compile time. This means that the
Vision Workbench can not take advantage of that information as readily: for example, it has no
way to know whether a three-plane image is RGB, HSV, or something altogether different, and
it cannot optimize operations by unrolling inner loops as it is able to with channels. (It may not
be readily apparent, but the sample program shown in Listing 1 demonstrates one of the very few
possibly-legitimate uses of planes; this will be discussed more in the following section on File I/O.)

To create a multi-plane image, pass the desired number of planes as a third argument to the
ImageView constructor or to the set_size() method. You can query the number of planes in an
image with the planes() method. To access a pixel in particular plane of an image, pass the plane
as a third argument when indexing into the image.

Image my_image(320,240,3); // A 3-plane image
my_image.set_size(320,240,3); // Same here
int planes = my_image.planes(); // Now planes == 3
Pixel pix = my_image(x,y,p); // Access a pixel

Once again, if you are thinking about using planes we encourage you to first consider these alter-
natives. If you want a way to store a collection of related images, consider using a std::vector of
ImageViews instead. If you just want to store a bunch of numbers at each pixel location, consider
using Vector<T,N> as a pixel type.

3.2 Image File I/O

The most common way to get image data into and out of the Vision Workbench is by loading and
saving images using file I/O. There are several mechanisms for doing this, varying in complexity,
flexibility and (for the time being) completeness of implementation.

3.2.1 Reading and Writing Image Files

The simplest method for file I/O is to use the read_image() and write_image() functions, passing
them an ImageView and the filename of the image file on disk that you would like to read from or
write to.

read_image(image, filename);
write_image(filename, image);

26 CHAPTER 3. WORKING WITH IMAGES

Name Extension(s) Description

PNG .png Standard for loss-less compression
JFIF/JPEG .jpg, .jpeg Standard for lossy compression, no alpha

TIFF .tif, .tiff Highly flexible, complicated
OpenEXR .exr High dynamic range

PDS .img Planetary Data System images

Table 3.3: The standard Vision Workbench image file formats. Which formats your installation
supports depends on what supporting libraries you have installed. Adding support for additional
file formats is discussed in Chapter 14.

Notice that the order of arguments to these two functions is reversed: in both cases the destination
is first and the source second.

Both functions determine the image file type by looking at the extension of the filename that you
provide them. The exact set of file formats that are supported depends on which file format libraries
the Vision Workbench found on your system when you build it. For example JPEG support depends
on libjpeg, and so forth. The file formats that the Vision Workbench is designed to support are
listed in Table 3.3. Note that the file extensions are case-insensitive.

Image data on disk is generally stored with one of the four standard pixel types: grayscale or
RGB with or without alpha. The image reading and writing routines will freely convert between
these formats. You should generally create an ImageView with the pixel type that you would like
to work with and let the file I/O system take care of the rest.

ImageView<PixelGrayA<float> > image;
read_image(image, "some_file.jpg");

In this example we loaded in a JPEG image file (which has an RGB pixel format) and then converted
the data grayscale and padded it with a constant alpha value of 1.0, corresponding to fully opaque.
Attempting to save this image back as a JPEG file would reverse the conversion. (Any transparency
is composited on to a black background whenever the alpha channel is removed.)

3.2.2 More Sophisticated File I/O

We will only provide an overview of the more advanced file I/O techniques here. Many of them
are partially (in some cases barely) implemented. If you want to use any of these features you can
learn more about them in Chapter 14.

Images on disk are handled via an abstract image resource class, called DiskImageResource
and defined in <vw/FileIO/DiskImageResource.h>. You can create one directly using the same
file-extension-based file type deduction mechanism discussed above.

DiskImageResource *dir1 = DiskImageResource::open(filename);
DiskImageResource *dir2 = DiskImageResource::create(filename, format);

In the first case we are opening an existing file, and in the second case we are creating a new file.
Creating a new file resource requires providing some hints about the underlying image format, such
as its dimensions and pixel type, which are supplied by a GenericImageFormat object.

Once you have a resource you can query it for information about its dimensions, pixel format
and channel type. For example, you can choose to process different pixel formats differently.

3.3. MANIPULATING IMAGES 27

switch(dir1->pixel_format()) {
case VW_PIXEL_GRAY: /* process grayscale file */ break;
case VW_PIXEL_RGB: /* process RGB file */ break;
/* ... */

}

You can use the DiskImageResource’s read() and write() methods to read the data into or write
the data out of an ImageView, respectively.

If you wish to force a particular file format, you can create a resource object of the appropriate
type directly.

DiskImageResourcePNG *dirp1 = new DiskImageResourcePNG(filename);
DiskImageResourcePNG *dirp2 = new DiskImageResourcePNG(filename, format);

In this case we show how to create PNG image resources. If you do this then you can take advantage
of any special services provided by the particular file format’s resource type, such as the ability to
read or write special file header information.

Finally, you can make a read-only ImageView-like object that corresponds to an image on disk.
This is called a DiskImageView and is defined in the header of the same name. This can be used
to process images that are too large to be loaded into memory all at once.

3.3 Manipulating Images

We have seen how images are represented via the ImageView class, how to save and load them to
and from disk, and how to manipulate their pixels individually. Now it is time to begin discussing
how to perform slightly higher-level operations on images.

3.3.1 Simple Image Manipulation

We begin with the simple image manipulation functions listed in Table 3.4 and defined in the
header file <vw/Image/Manipulation.h>. Many of these should be self-explanatory. The results
of applying several of these transforms to an image are shown in Figures 3.1(b)–3.1(i). The 90-
degree rotation functions are one of the few places where the Vision Workbench makes any kind of
assumption about the interpretation of the x, y coordinate system. When it is necessary to make
a distinction we assume that the origin (0, 0) is the top-left corner of the image. If you have been
interpreting the origin as the top-right or bottom-left you will need to invert your notion of clockwise
vs. counter-clockwise when calling these two functions.

None of these functions, by themselves, modify image data or produce new images. Instead,
each function returns a special view on to the same image data. In most cases you will assign the
result to another ImageView, causing the data to be processed and the resulting image to be stored
in the new buffer:

image2 = flip_vertical(image1);

It’s worth taking a moment to study exactly what goes on behind the scenes when you perform
an operation like this. First the Vision Workbench resizes the destination image (image2 in the
above example) if necessary so that its dimensions are the same as those of the source image (a
flipped version of image1). Second it computes the result of the operation, storing the result in the
destination image as it goes. The important point is that if the destination image already has the

28 CHAPTER 3. WORKING WITH IMAGES

Function Description

rotate_180(im) Rotate the image 180 degrees
rotate_90_cw(im) Rotate the image 90 degrees clockwise
rotate_90_ccw(im) Rotate the image 90 degrees counter-clockwise
flip_vertical(im) Flip the image vertically
flip_horizontal(im) Flip the image horizontally

transpose(im) Transpose the x and y coordinates of the image
crop(im,x,y,c,r) Crop the image, specifying (x, y) and (cols, rows)
crop(im,bbox) Crop the image, specifying a bounding box

subsample(im,factor) Subsample the image by an integer factor
subsample(im,xfac,yfac) Subsample the image by integer factors in x and y

select_col(im,col) Refers to an individual column of an image
select_row(im,row) Refers to an individual row of an image

select_plane(im,plane) Refers to an individual plane of an image
select_channel(im,channel) Refers to an individual channel of an image
channels_to_planes(im) Interprets a multi-channel image as a multi-plane image

pixel_cast<PixelT>(im) Casts an image to a new pixel type
pixel_cast_rescale<PixelT>(im) Casts an image to a new pixel type, with rescaling

channel_cast<ChanT>(im) Casts an image to a new channel type
channel_cast_rescale<ChanT>(im) Casts an image to a new channel type, with rescaling
planes_to_channels<PixelT>(im) Interprets a multi-plane image as a multi-channel image

weighted_rgb_to_gray(im) Converts RGB to grayscale with default weights
weighted_rgb_to_gray(im,r,g,b) Converts RGB grayscale with the given weights

Table 3.4: The simple image manipulation functions, defined in the header file
<vw/Image/Manipulation.h>. The functions in the top section return writable views.

same dimensions as the source image then it is not resized or reallocated. This avoids unnecessary
memory allocations in common situations, such as when you are processing many identically-sized
images in a loop. However, it also means that you must be careful when processing an image and
assigning it back to itself:

image = flip_vertical(image); // Bad idea: self-assignment

In this example, the destination image clearly has the same dimensions as the source (since they are
the same image) and so no new image buffer is allocated. As a result the flip_vertical operation
will clobber the source image with partial results, producing garbage. One solution to this problem
is to force the creation of a temporary buffer using the copy function:

image = copy(flip_vertical(image)); // Much better

The functions listed in the upper section of Table 3.4 all provide new ways of accessing the same
data without doing any additional processing. As a result, these functions are all able to return
writable views of their image argument. That is, you can use them to modify an image by placing
them on the left side of an equals sign. For example, suppose you want to add a small inset to a
larger image, by copying a small image into the larger one at a particular position. One easy way
is to specify the destination region using the crop() function:

3.3. MANIPULATING IMAGES 29

Function Description

copy(im) Produce a deep copy of an image
fill(im,value) Fill an image with a pixel value in-place

clamp(im,[low],[high]) Clamp values to the given range
normalize(im,[low],[high]) Normalize values to the given range

threshold(im,[thresh],[low],[high]) Threshold an image to two values
grassfire(im) Compute the grassfire image of an image
blob_index(im) Apply index numbers to valid regions of an image
bounding_box(im) Return the bounding box of an image

nonzero_data_bounding_box(im) Compute the bounding box of nonzero data
image_blocks(im,width,height) Tile an image with bounding boxes

Table 3.5: The simple image algorithms defined in the header file <vw/Image/Algorithms.h>.

int cols = small_image.cols(), rows = small_image.rows();
crop(large_image, xpos, ypos, cols, rows) = small_image;

Here we’ve cropped a region of the large image and used it for writing instead of reading. Note
that the assignment proceeds just as before: first the destination image dimensions are checked,
and then the data is copied. However in this case the Vision Workbench will throw an exception if
the dimensions differ, since it is not meaningful to “resize” a cropped region in the same sense that
you can freely resize an ImageView. This approach can also be used, for example, to replace one
channel of a multi-channel image using select_channel().

The functions listed in the lower section of Table 3.4, on the other hand, all do a small amount
of processing of pixel values. The pixel_cast() function converts all the pixels in an image to the
given new pixel type. The pixel_cast_rescale() variants rescale the values if the channel type
has changed, e.g. mapping the 0–255 range of uint8 on to the 0.0–1.0 nominal range of float32.
The channel_* variants cast the pixels to have the given new channel type, leaving the overall pixel
format unchanged. The pixels_to_channels() function takes a multi-plane image and reinterprets
it as a multi-channel image with the given pixel type. Finally, weighted_rgb_to_gray converts
RGB pixels to the corresponding grayscale pixel type using an arbitrary weighting of the red, green,
and blue channels. The default weights are based on a human perceptual model that weights green
most strongly, followed by red and then blue.

3.3.2 Image Algorithms

We will now introduce a number of additional simple image operations that are defined in the
header file <vw/Image/Algorithms.h>. You have already seen one of them, copy(), which forces
the creation of a deep copy of an image in a new buffer. The rest are listed in Table 3.5. The result
of two of these functions can be seen in Figures 3.1(j) and 3.1(k). We hope to implement a number
of additional image algorithms, mirroring the STL container algorithms but optimized for images,
at some point in the future.

The fill() function is noteworthy because it is currently the only core Vision Workbench
function that modifies image data in-place. It is especially useful for filling a single channel of an
image. For example, you can use it to make an RGBA image fully opaque.

fill(select_channel(rgba_image, 3), 1.0);

30 CHAPTER 3. WORKING WITH IMAGES

(a) mural (Original) (b) rotate_180(mural)

(c) rotate_90_cw(mural) (d) rotate_90_ccw(mural) (e) transpose(mural)

(f) flip_vertical(mural) (g) flip_horizontal(mural)

(h)
crop(mural,80,60,160,120)

(i) subsample(mural,2)

(j) threshold(mural,0.5) (k) clamp(mural,0.25,0.75)

Figure 3.1: Sample output from the simple image operations discussed in this section.

3.3. MANIPULATING IMAGES 31

(Note that 1.0 represents fully-opaque if the image has a floating-point channel type.)
The clamp(), normalize(), and threshold() functions return modified versions of their image

arguments. You can assign the result back to the original image, or you can save it in a different
image instead and keep the original. The clamp() function clamps the values in the image to the
given range. The normalize function scales and shifts the values of an image so that the values span
the specified range. The default range is from zero to the nominal maximum value for the channel
type, e.g. 1.0 for floating-point images. This is particularly useful for saving intermediate results of
your algorithms to disk for debugging. Finally, the threshold function returns a two-valued image
based on whether the pixels in the source image is greater than or less than the given threshold
value. The default high and low output values are the same as for norm, and the default threshold
is zero. For example, this line will convert a floating-point grayscale image to pure black-and-white:

image = threshold(image, 0.5);

(a) pattern (Original) (b) normalize(
channel cast<float>(
grassfire(pattern)))

(c) normalize(
channel cast<float>(
blob index(
create mask(pattern))))

Figure 3.2: Sample output from more complex operations.

The grassfire() algorithm, named for the algorithm that it implements, is more specialized.
It takes an image and efficiently computes how far each pixel is from from a pixel whose value is
zero, assuming that pixels outside the image boundaries all have zero value. It measures distance in
the four-connected Manhattan sense, i.e. as the sum of the horizontal and vertical distances. This
algorithm is used in a variety of applications, such as avoiding obstacles and unknown terrain in
path planning.

The blob_index() algorithm, applies an index value to isolated sections of images label valid.
The determination of a pixel’s validity is from a special pixel called PixelMask. PixelMask is
discribed in the Pixels Types chapter. blob_index is useful algorithm for segmenting an image.

32 CHAPTER 3. WORKING WITH IMAGES

Chapter 4

Image Processing

Now that we’ve covered all the basics of how to manipulate images, it’s time to move on to some
more interesting image processing tasks. We begin with an introduction to image filtering, followed
by a discussion of image math. We then take a brief detour to introduce the Vision Workbench’s
Vector and Matrix classes before describing image transformation and warping.

By the end of this chapter you will have encountered all of the core building blocks that comprise
the heart of the Vision Workbench. There are a number of directions that you can go from here,
depending on what you are hoping to accomplish. We conclude this chapter with an overview of
the many more specialized features of the Vision Workbench and a discussion of where to look (in
this book and elsewhere) in order to learn more about them.

4.1 Image Filtering

Image filtering has traditionally been the bread and butter of image processing software packages.
The Vision Workbench includes a number of functions to perform the most common filtering oper-
ations. We will first describe the special-purpose filters, and then we will discuss the more general
convolution-based linear filtering functions. All of the filter functions discussed in this section are
defined in the header file <vw/Image/Filter.h>. We will not discuss frequency-domain filtering in
this chapter; that is covered later in Section 14.7.

4.1.1 The Special-Purpose Filters

At the moment only three special-purpose filters are fully supported. The first is a Gaussian
smoothing or blurring filter, which convolves the image with a discrete Gaussian kernel that has a
user-specified standard deviation (a.k.a. “sigma”) and user-specified size in each axis. In order for
the filter to accurately approximate a Gaussian, the size of the kernel should be at least a few times
the standard deviation. However, unnecessary computation is performed if the size is much larger
than that. You can omit the size arguments, in which case the function will pick a kernel size based
on your standard deviation that is reasonable for most applications. In the most common case the
two standard deviations are equal, in which case you need only specify a single value for sigma.

result = gaussian_filter(image, sigma);
result = gaussian_filter(image, xsigma, ysigma);
result = gaussian_filter(image, xsigma, ysigma, xsize, ysize);

33

34 CHAPTER 4. IMAGE PROCESSING

Function Description

gaussian_filter(im,...) Apply a Gaussian smoothing filter to an image
derivative_filter(im,...) Apply a discrete differentiation filter to an image
laplacian_filter(im,...) Apply a discrete Laplacian filter to an image
convolution_filter(im,...) Apply a general 2D convolution filter to an image

separable_convolution_filter(im,...) Apply a separable convolution filter to an image

Table 4.1: The Vision Workbench image filtering functions, defined in <vw/Image/Filter.h>.

Type Description

ConstantEdgeExtension Extends an image with constant (i.e. nearest-neighbor) values
ZeroEdgeExtension Extends an image with a zero value in all directions

ReflectEdgeExtension Extends an image by reflecting across its edges
PeriodicEdgeExtension Extends an image by repeating it periodically

Table 4.2: The edge extension modes.

In these examples, the sigma arguments are generally floating-point whereas the size variables are
integers.

The next filter is the derivative filter, which performs a discrete spatial differentiation of your
image. Here again, you can specify the order of differentiation in the two axes as well as the filter
kernel size.

result = derivative_filter(image, xderiv, yderiv);
result = derivative_filter(image, xderiv, yderiv, xsize, ysize);

There is a minimum filter size below which it is not possible compute any given derivative, and
these functions will throw an exception if you try. For the most part it is a good idea to just let
the Vision Workbench pick the kernel size.

The final special-purpose filter is the Laplacian filter, which performs a discrete approximation
to the Laplacian operation ∇2 = d2

dx2 + d2

dy2 .

result = laplacian_filter(image);

This filter does not take any special parameters. Note that if you are accustomed to using a “larger”
derivative or Laplacian filter to reduce the effect of noise, you are probably better off applying a
smoothing operation (e.g. via gaussian_filter()) first.

4.1.2 Edge Extension Modes

To filter the regions near the edges of an image properly, filters like these need to make some sort of
assumption about the contents of the source image beyond the image boundaries. This is generally
referred to as “edge extension”. The default assumption made by the filters discussed in this section
is that in each direction the image is extended with a constant value equal to the value of the nearest
edge pixel. However, you can specify an alternative edge extension mode if you wish, by passing an
extra argument to the filters. The C++ type of the argument determines the edge extension mode
used.

result = gaussian_filter(image, 3.0, ConstantEdgeExtension());
result = gaussian_filter(image, 3.0, ZeroEdgeExtension());

4.1. IMAGE FILTERING 35

Both of these examples filter the source image using a standard deviation of three pixels and an
automatically-chosen kernel size. However, the first explicitly requests the default edge extension
behavior, while the second requests that the source image be assumed to be zero outside the image
boundaries.

Notice the “extra” set of parentheses after the names of the edge extension modes. Remember
that those names are C++ types, and you can only pass an object as an argument to a function.
Those parentheses invoke the edge extension type’s constructor, returning a dummy object that you
pass as the final argument to the filtering function. If you find this confusing, don’t worry too much
about it right now. Just keep in mind that when you’re using a type as an argument to a function
to change its behavior you need the extra parentheses. The types that are currently supported as
edge extension modes are listed in Table 4.2.

4.1.3 General Convolution Filtering

Most of the filters used in image processing are convolution filters, which express each output pixel
as a fixed weighted sum of neighboring input pixels. An image convolution filter is usually described
by a rectangular array of weights called the kernel. The easiest way to think about an image kernel
is as the result that you would desire from the filter if the input image had the value 1 at the origin
and zero everywhere else. (This is also known as the “impulse response” of the filter.) For example,
a first-order derivative filter in the x direction might have the kernel [1 0 −1]. In this case we
also need to know that the middle number of the kernel (the zero in this case) is the kernel’s origin.

In the Vision Workbench, convolution kernels—which as we’ve said are nothing more than
rectangular arrays of numbers—are represented by images. The pixel type for a kernel should
generally be a scalar type such as float. Once you’ve put the kernel that you’d like into an image
it is straightforward to use it to filter another image.

ImageView<float> kernel;
/* set up your kernel here */
result = convolution_filter(image, kernel);

In this case the Vision Workbench assumes that the center pixel of the kernel is the kernel’s origin.
If this is not what you want then you can specify the coordinates of the kernel’s origin explicitly
instead.

result = convolution_filter(image, kernel, ox, oy);

In either case you can also optionally specify an edge extension mode, just like you could for the
special-purpose filters.

Convolution filtering can be computationally expensive if the kernel is large. Fortunately, many
useful kernels have a special form that makes it possible to improve the performance considerably.
These are called separable kernels, and are themselves the result of convolving a single-column image
with a single-row image. In other words, the kernel K must satisfy K(x, y) = Kx(x)Ky(y) for some
functions Kx and Ky. The Gaussian and derivative filters are both of this form, for example, though
the Laplacian filter is not.

The Vision Workbench provides special support for efficient convolution filtering with separable
kernels. You must supply the separated kernel, i.e. two one-dimensional kernels.

result = separable_convolution_filter(image, xkernel, ykernel);
result = separable_convolution_filter(image, xkernel, ykernel, ox, oy);

36 CHAPTER 4. IMAGE PROCESSING

Per-pixel Sum Per-pixel Difference Per-pixel Product Per-pixel Quotient

image + image image - image image * image image / image

image += image image -= image image *= image image /= image

image + value image - value image * value image / value

image += value image -= value image *= value image /= value

value + image value - image value * image value / image

Table 4.3: The Vision Workbench image operators are included automatically when you include
<vw/Image/ImageMath.h>).

As in the general 2D convolution case, the origin of the kernel is assumed to be in the middle if
you do not specify otherwise and in either case you can add an optional argument specifying the
edge extension mode. You can still supply the one-dimensional kernels as images, just as you did
in the general 2D convolution case, but here you can also provide them in another STL-compliant
container, such as a std::vector or (as we shall introduce later this chapter) a vw::Vector. If you
do chose to represent the kernels as images, remember that each should have one of the dimensions
set to 1.

4.2 Doing Math with Images

In image processing it is often desirable to perform some mathematical operation on every pixel of
an image, or to corresponding pixels from several images. For example gamma correction involves
applying a mathematical function to each pixel, and background subtraction involves subtracting
the corresponding pixels from two images. In the Vision Workbench, these operations and others
like them fall under the rubric of “image math”, and the functions to support them are defined in
the header <vw/Image/ImageMath.h>.

4.2.1 Image Operators

In most cases writing code to perform image math is trivial. The mathematical expressions that
you would normally write for individual pixels work just as well for whole images of pixels. For
example, consider the background subtraction problem mentioned above.

result_image = input_image - background_image;

That’s all there is to it. Setting up an IIR low-pass filter to estimate the background image is just
as easy.

background_image = alpha*input_image + (1-alpha)*background_image;

(Here we’re assuming that alpha is a small positive floating-point number.) The important point
is that there is no need for you to write a loop that performs an operation like this on each pixel.
Just write the mathematical expression, replacing pixels with images, and you’re all set.

This works, of course, because the Vision Workbench has overloaded the standard C++ math-
ematical operators to work on images. These operators are listed in Table 4.3. Operation with
scalars is treated identically to per-pixel operation with constant-value images. In order to simplify
division with large images, the image division operators have been designed so that division by zero
returns zero instead of throwing an exception.

4.2. DOING MATH WITH IMAGES 37

Function Description Function Description

sin Sine, sin x asin Inverse sine, sin−1 x

cos Cosine, cos x acos Inverse cosine, cos−1 x

tan Tangent, tanx atan Inverse tangent, tan−1 x

atan2 Two-argument form of inverse tangent, tan−1 x/y

sinh Hyperbolic sine, sinh x cosh Hyperbolic cosine, cosh x

tanh Hyperbolic tangent, tanhx exp Exponential, ex

log Natural logarithm, lnx log10 Base-10 logarithm, log10 x

ceil Ceiling function, #x$ floor Floor function, %x&
sqrt Square root,

√
x pow Power function, xy

asinh Inverse hyperbolic sine, sinh−1 x acosh Inverse hyperbolic cosine, cosh−1 x

atanh Inverse hyberbolic tangent, tanh−1 x cbrt Cube root, 3
√

x

exp2 Base-2 exponential, 2x expm1 Exponential minus 1, ex − 1

log2 Base-2 logarithm, log2 x log1p Lograithm of one-plus, ln(1 + x)

tgamma Gamma function, Γ(x) lgamma Log of Gamma function, ln |Γ(x)|
hypot Hypotenuse,

√
x2 + y2 copysign Sign-copying function

round Rounding function trunc Floating-point truncation

fdim Positive difference, max(x− y, 0)

Table 4.4: The Vision Workbench image math functions, as defined in <vw/Image/ImageMath.h>.
The functions in the bottom section are not available under the Windows operating system.

There is one important issue to bear in mind when using image operators: the underlying per-
pixel operations must themselves be meaningful. For example, multiplying an image whose pixel
type is PixelGray by an image whose pixel type is PixelRGB is not well-defined, and attempting
to do so will result in a compiler error. The Vision Workbench will not automatically “promote”
the grayscale image to RGB.

This raises the question of what happens when you multiply two images both of whose pixel
type is, for example, PixelRGB. What does it mean to multiply two RGB colors? Multiplication
is defined for numbers, not colors. The answer is that in this situation the Vision Workbench will
actually perform the mathematical operation on a per-channel basis rather than just a per-pixel
basis.

A good rule of thumb when working with image operators is to restrict yourself to operating on
images of the same type, or combinations of images of one type and images of scalars. As long as
you obey this rule you should find that the image operators always do what you expect.

4.2.2 Mathematical Functions

Of course, C++ provides a range of mathematical functions, too, such as exponentials and loga-
rithms, trigonometric functions, and so forth. The Vision Workbench extends these functions to
operate on images as well. The supported functions are listed in Table 4.4. Note that these image
functions are built on top of the standard C++ functions that operate on regular numbers. There-
fore, the Vision Workbench only supports those functions that are provided by your platform. In

38 CHAPTER 4. IMAGE PROCESSING

particular, the bottom half of Table 4.4 lists functions that are not currently available under the
Microsoft Windows operating system.

You can use these functions just like you use the mathematical operators: write the same
expression that you would write for individual pixels, but substitute whole images instead.

float gamma = 1.8;
result_image = pow(input_image, gamma);

This example demonstrates how to use the pow() function to gamma-correct an image. Here the
variable gamma is a floating-point number representing the desired gamma correction factor for the
entire image. However, if instead we wanted to apply a variable gamma correction factor on a
per-pixel basis, the following code would do the trick.

ImageView<float> gamma_image; // Initialize with different gamma values
result_image = pow(input_image, gamma_image);

This example demonstrates that the arguments of a two-argument mathematical function can be
either scalar or image values. Just as with the operators, scalar arguments are treated the just like
a constant-value image.

Note that unlike the normal mathematical functions that C++ inherited from C, it is not
necessary (or correct) to use a different function name when you are working with float image
data than you would use to work with double image data. The function names listed in Table 4.4
are correct for image math in all cases. Those in turn use the proper underlying mathematical
functions as appropriate—for example, sin() invokes sinf() on each pixel if it is applied to a
float-based image.

4.3 Vectors and Matrices

Before introducing the next image processing topic, image transformation and warping, we must first
take a brief detour to introduce the Vision Workbench vector and matrix classes. We will assume
in this chapter that you have a good familiarity with the underlying mathematical entities that
these classes represent. Note that our mathematical usage of the word “vector” here is somewhat
different from the C++ standard library’s use of the word to mean a dynamically-resizable array.

4.3.1 Vectors and Vector Operations

The Vision workbench vector class is called, appropriately enough, Vector. Like ImageView, Vector
is a template class whose first template parameter is required and specifies the underlying numeric
type. However, while the dimensions of an image are always specified at run-time via the image’s
constructor or the set_size() method, Vector comes in two variants. The first form behaves in
just the same way, but the second form has a fixed size that is specified at compile time. This
eliminates the need for frequent dynamic allocation when working with vectors in the common case
when the vector dimension is known.

Declaring either type of vector is straightforward:

Vector<float> vector1(3);
Vector<float,3> vector2;

4.3. VECTORS AND MATRICES 39

Both of those statements declare three-dimensional vectors of floating-point numbers. In the first
case the vector is allocated dynamically on the heap and the size could have been chosen at run-
time. In the second case the vector is allocated statically on the stack, but the dimension can not
vary at run time. The first form is generally useful when, say, reading a large vector of data in from
a file, while the second form is more useful when performing geometric computations.

The second, fixed-dimension form also has special constructors that you can use to initialize the
vector contents:

Vector<float,3> vector2(1,2,3);

These constructors are available with up to four arguments. Alternatively, you can construct both
fixed-size and dynamically-sized vector with data copied from a block of memory that you point
them to:

float *some_data;
Vector<float> vector1(3, some_data);
Vector<float,3> vector2(some_data);

Remember that this copies the data, so it can be inefficient; see the discussion of VectorProxy
below for an alternative. Three of the most commonly used vector types have special aliases, for
convenience:

typedef Vector<double,2> Vector2;
typedef Vector<double,3> Vector3;
typedef Vector<double,4> Vector4;

These types are used throughout the Vision Workbench as the standard geometric vector types.
You can query a vector about its size (i.e. dimension or length) with the size() method, and

you can index into a vector to access individual elements:

for(unsigned i=0; i<vector1.size(); ++i) vector1(i) = 0;

This example loops over all the elements of a vector, setting them to zero. You can also into a
vector with square brackets instead of parentheses if you prefer. For fixed-length vectors there is
one more way to access up to the first three elements, via methods called x(), y(), and z().

vector2.x() = 0; // Set the first element to zero

These methods are only available if the vector has sufficient length. For example, attempting to use
the z() method of a vector of type Vector<float,2> will result in a compile-time error. Remember,
these methods are only available for fixed-size vectors, not dynamically-sized ones. Dynamically-
sized vectors, however, can be resized:

vector1.set_size(10);

The set_size() function takes an optional second argument that specifies whether or not the
vector contents should be preserved. This argument defaults to false, so in the above example the
old contents (if any) are lost.

The Vector classes support the standard mathematical operations of vector addition and sub-
traction and scalar multiplication and division via the usual C++ operators. They also support
the a range of elementwise mathematical operations, such as adding a scalar to each element or
multiplying the corresponding elements of two vectors, via functions of the form elem_*. There are

40 CHAPTER 4. IMAGE PROCESSING

Function Description

- vector Vector negation
vector + vector Vector sum
vector - vector Vector difference
vector * scalar Scalar product
scalar * vector Scalar product
vector / scalar Scalar quotient
vector += vector Vector sum assignment
vector -= vector Vector difference assignment
vector *= scalar Scalar product assignment
vector /= scalar Scalar quotient assignment

elem_sum(vector,vector) Elementwise vector sum (same as + operator)
elem_sum(vector,scalar) Elementwise sum of a vector and a scalar
elem_sum(scalar,vector) Elementwise sum of a scalar and a vector
elem_diff(vector,vector) Elementwise vector difference (same as - operator)
elem_diff(vector,scalar) Elementwise difference of a vector and a scalar
elem_diff(scalar,vector) Elementwise difference of a scalar and a vector
elem_prod(vector,vector) Elementwise product of two vectors
elem_prod(vector,scalar) Elementwise vector product (same as * operator)
elem_prod(scalar,vector) Elementwise vector product (same as * operator)
elem_quot(vector,vector) Elementwise quotient of two vectors
elem_quot(vector,scalar) Elementwise quotient (same as / operator)
elem_quot(scalar,vector) Elementwise quotient of a scalar and a vector

norm_1(vector) 1-norm of a vector, i.e.
∑ |vi|

norm_2(vector) Euclidean 2-norm of a vector, i.e.
√∑

v2
i

norm_2_sqr(vector) Squared 2-norm of a vector, i.e.
∑

v2
i

norm_inf(vector) Infinity-norm of a vector, i.e. max |vi|
sum(vector) Sum of elements, i.e.

∑
vi

prod(vector) Product of elements, i.e.
∏

vi

normalize(vector) The normalized form of a vector, i.e. v/|v|
dot_prod(vector,vector) Vector dot product, i.e. u · v
cross_prod(vector,vector) Vector cross product, i.e. u× v

Table 4.5: The vector math functions defined in <vw/Math/Vector.h>.

a number of vector norms and related functions, as well as a vector dot product and cross product.
(The cross product is, of course, only valid for three-dimensional vectors.) The complete list of
vector math functions defined in <vw/Math/Vector.h> is given in Table 4.5.

A Vector object is also a container in the C++ Standard Template Library sense of the word.
There is a Vector<...>::iterator type that serves as the vector’s iterator, and there are begin()
and end() methods that return iterators to the first and one-past-the-last elements, as usual. This
can be an extremely convenient way to load data into and out of Vectors.

You can extract a portion of a vector using the subvector() function, which takes three argu-
ments: the original vector, the position of the first element to extract, and the number of elements
in the resulting vector:

4.3. VECTORS AND MATRICES 41

Vector<float,3> vector2 = subvector(vector1,5,3);

This example copies the fifth, sixth, and seventh elements of vector1 into a new three-element
vector.

The streaming operator << is also defined for writing vectors to C++ output streams, which
you can use to dump vector contents for debugging:

Vector<float,3> vector2(1,2,3);
std::cout << vector2 << std::endl;
// The output is: [3](1,2,3)

Note that the size of the vector is printed first, followed by the vector’s contents.
Sometimes it can be useful to work with data that is already stored in memory as though it were

stored in a Vector object. As long as the data is stored in the usual packed format this is easy to do
using the special VectorProxy type, which also comes in fixed-size and dynamically-sized variants:

float some_data[10] = {0,1,2,3,4,5,6,7,8,9};
VectorProxy<float> proxy1(10, some_data);
VectorProxy<float,10> proxy2(some_data);

The constructor arguments are the same as are used in Vector to initialize a vector with data from
a block of memory, except the data is not copied. You can now treat these proxy objects just
like the were regular Vectors, except the contents will be stored in the region of memory that you
pointed them to. In some situations this can be considerably more efficient than copying the data
unnecessarily. (It is of course not possible to resize a VectorProxy, since the proxy does not have
any control over the memory that it is using.)

4.3.2 Matrices and Matrix Operations

The Vision Workbench Matrix class is the matrix counterpart to the Vector class, and behaves
quite similarly. Once again, there are fixed-dimension and dynamically-sized versions:

Matrix<float> matrix1(3,3);
Matrix<float,3,3> matrix2;

Note that the arguments to matrix-related functions such as these constructors are given in i, j
order, i.e. row followed by column. This is different from images, where arguments are given in x, y
order, i.e. column followed by row. You may find this confusing at first if you are moving to the
Vision Workbench from an environment like Matlab where there is no distinction between images
and matrices. However, it is in keeping with the standard index ordering seen in the bulk of the
image processing and mathematics literatures, respectively.

You can initialize the matrix with data already stored in memory, as long as the data is stored
in a packed row-major format:

float some_data[4] = {1,2,3,4};
Matrix<float> matrix1(2,2,some_data);
Matrix<float,2,2> matrix2(some_data);

As in the case of Vector, the initialization data is copied into the matrix in this case, but there is
also a proxy form that allows you treat in-memory data like an ordinary matrix:

42 CHAPTER 4. IMAGE PROCESSING

float some_data[4] = {1,2,3,4};
MatrixProxy<float> matrix1(2,2,some_data);
MatrixProxy<float,2,2> matrix2(some_data);

The three most common matrix types have been given convenient aliases:

typedef Matrix<double,2,2> Matrix2x2;
typedef Matrix<double,3,3> Matrix3x3;
typedef Matrix<double,4,4> Matrix4x4;

These types are again the standard types used throughout the Vision Workbench in geometric
applications.

You can query a matrix’s dimensions using the rows() and cols() methods, and can index into
the matrix to access individual elements. There are two ways to do this:

matrix(row,col) = 1; // "New"-style indexing
matrix[row][col] = 1; // "Old"-style indexing

A dynamically-sized matrix can be resized using the set_size() method:

matrix.set_size(rows,cols);

As in the case of resizing vectors, the default behavior is that any old data is not saved. The
set_size() method takes an optional third boolean parameter that can be set to true to request
that it preserve the overlapping entries.

Once you’ve made one or more matrices you can use a wide range of mathematical operator
and functions to manipulate them. The standard C++ operators, elementwise math functions,
and a number of other functions similar to those for vectors are supported. A list of the ma-
trix math functions is given in Table 4.6. Notice that some of these functions also operate with
vectors: all vector functions that involve matrices are defined in <vw/Math/Matrix.h> instead of
<vw/Math/Vector.h>.

There is a special method, set_identity(), that can be used to set a square matrix to the
identity matrix of that size.

Matrix<float> id(3,3);
id.set_identity();

If you want to treat a single row or column of a matrix as though it were a vector, you can do so
using the select_row() and select_col() function:

Vector<float> first_row = select_row(matrix,1);
select_col(matrix,2) = Vector3(1,2,3);

The second of these examples illustrates that you can use the select_* functions to write into
matrix rows and columns as well as read them out. Finally, you can treat a block of a matrix as a
smaller matrix in its own right using the submatrix() function:

Matrix<float> block = submatrix(matrix,row,col,rows,cols);

4.3. VECTORS AND MATRICES 43

Function Description

- matrix Matrix negation
matrix + matrix Matrix sum
matrix - matrix Matrix difference
matrix * scalar Scalar product
scalar * matrix Scalar product
matrix / scalar Scalar quotient
matrix += matrix Matrix sum assignment
matrix -= matrix Matrix difference assignment
matrix *= scalar Scalar product assignment
matrix /= scalar Scalar quotient assignment

matrix * matrix Matrix product
matrix * vector Matrix-vector product
vector * matrix Vector-matrix product

elem_sum(matrix,matrix) Elementwise matrix sum (same as + operator)
elem_sum(matrix,scalar) Elementwise sum of a matrix and a scalar
elem_sum(scalar,matrix) Elementwise sum of a scalar and a matrix
elem_diff(matrix,matrix) Elementwise matrix difference (same as - operator)
elem_diff(matrix,scalar) Elementwise difference of a matrix and a scalar
elem_diff(scalar,matrix) Elementwise difference of a scalar and a matrix
elem_prod(matrix,matrix) Elementwise product of two matrices
elem_prod(matrix,scalar) Elementwise matrix product (same as * operator)
elem_prod(scalar,matrix) Elementwise matrix product (same as * operator)
elem_quot(matrix,matrix) Elementwise quotient of two matrixs
elem_quot(matrix,scalar) Elementwise quotient (same as / operator)
elem_quot(scalar,matrix) Elementwise quotient of a scalar and a matrix

norm_1(matrix) Matrix 1-norm
norm_2(matrix) Matrix 2-norm

norm_frobenius(matrix) Matrix Frobenius norm
sum(matrix) Sum of elements, i.e.

∑
vi

prod(matrix) Product of elements, i.e.
∏

vi

trace(matrix) Matrix trace, i.e.
∑

Mii

transpose(matrix) Matrix transpose, i.e. MT

inverse(matrix) Matrix inverse, i.e. M−1

null(matrix) Matrix nullspace, i.e. a)x where Mx = 0

Table 4.6: The matrix math functions defined in <vw/Math/Matrix.h>.

You can also use this function to write into a region of a matrix, much as in the previous example
using select_col().

Like Vector, Matrix is a C++ STL-compatible container class. The Matrix<...>::iterator
iterates over the elements of a matrix in the same order that the ImageView’s iterator does: across
each row, moving down the matrix from each row to the next. This is again a good method for
loading or extracting matrix data from other containers. To extract the matrix data to a stream
for debugging output you can use the << stream output operator:

44 CHAPTER 4. IMAGE PROCESSING

double data[4] = {1,2,3,4};
Matrix2x2 matrix(data);
std::cout << matrix << std::endl;
// The output is: [2,2]((1,2)(3,4))

Again, the output includes the matrix dimensions (rows followed by cols), followed by the matrix
data.

4.4 Transforming or Warping Images

We return now to our discussion of image processing by introducing a new concept: image trans-
formation. Most of the image processing operations we have dealt with so far (with the exception
of the simple transforms in Section 3.3.1) have operated on pixel values. Image transformation, or
warping, is a common image processing operation that operates instead on a pixels location.

4.4.1 Transform Basics

Let’s start with a basic example of image transformation. First, include the <vw/Image/Transform.h>
header file. Now, imagine you would like to translate all of the pixels in the image 100 pixel po-
sitions to to right. This operation does nothing to the pixel values except to relocate them in the
image. The Vision Workbench provides a convenient method for performing this operation.

double u_translation = 100;
double v_translation = 0;
result_image = translate(input_image, u_translation, v_translation);

This simple example already raises some interesting questions. How big is the output image?
What happens to the pixels that are translated off the right edge of the image? What value is used
to fill in pixels where the original image has no data?

The answer to the first question is straight-forward. By default, the transformed image will
have the same dimensions as the input image. However, you can easily override this behavior by
selecting a different region from the output image using the crop() function. For example, you
could grow the right side of the output image to include the shifted pixels.

result_image = crop(translate(input_image, u_translation, v_translation),
0, 0, input_image.cols() + x_translation, input_image.rows());

If input_image was 320x240, result_image will be 420x240 pixels and it will have a 100x240
black band on its left side.

This is a good time to stop to consider what is really happening here, because the ability to
arbitrarily crop the output of a transformed image is extremely useful. Under the hood, our call
to translate is returning an object that behaves like an image (so it can be cropped), but it is
actually presenting an image-like interface to some processed, edge-extended data. Thus, you can
use crop() to select a region of pixels anywhere in the pixel space that contains the resulting image.
It is not until you assign the cropped image to result_image that this data is once again rasterized
and stored as a contiguous block in memory.

Note that the Vision Workbench adopts a consistent coordinate system when working with
pixels in the transformed image space. The origin is at the upper left hand corner of the original

4.4. TRANSFORMING OR WARPING IMAGES 45

Input Image
Bounding Box

Output Image
Bounding Box

Transform (output) Pixel Space

(0,0) (100,0)

+u

+v

Figure 4.1: Using the crop() function, you can select any region of the transformed (in this case,
translated) image that you need.

image, with the u coordinate increases as you move down the rows of the image. Figure 4.1 shows
this coordinate system and the input and output bounding boxes in the case of the the cropped,
translated image example we have been working with.

Using this intuition, we can now answer the second question posed above. When the pixels are
translated off of the right edge of the image, they disappear unless they are explicitly selected using
crop(). The only other reasonable behavior might have been to have the pixels wrap around and
enter on the left side of the image. This is not supported using the Vision Workbench translate()
function, however, as you will learn in the next section, such transformations are still possible using
the general transform framework.

Finally, we arrive at the third question: what pixel value is used to fill area where the original
image has no data? To answer this, think back to the discussion of edge extension modes for the
filter routines in section 4.1.2. Edge extension behavior in the transform routines of the Vision
Workbench are specified in an identical fashion.

result_image = translate(input_image,
u_translation, v_translation,
ConstantEdgeExtension());

In this example, the left 100x240 block of result_image will contain the “smeared out” pixels
from the left side of the input image. Of course, this is probably not what you wanted, so the
default behavior edge extension behavior for translate() is set to ZeroEdgeExtension().

One final point before we move on to talking about image transformations more generally.
Consider this block of code:

double u_transformations = 100.5;
double v_transformation = 30.7;
result_image = translate(input_image, u_translation, v_translation,

ConstantEdgeExtension(), BicubicInterpolation());

46 CHAPTER 4. IMAGE PROCESSING

Type Description

NearestPixelInterpolation Use the nearest integer valued pixel location
Bilinear Interpolation Linearly interpolation based on the four nearest pixel values
Bicubic Interpolation Quadritic interpolation based on the nine nearest pixel values

Table 4.7: The Vision Workbench Interpolation Modes.

Here, the image is translated by a non-integer number of pixels. This is a totally reasonable
thing to do, but it raises the question of how one accesses a non-integer pixel location in the
source image. The answer: interpolation. As with edge extension, you can specify the interpolation
mode by passing in a dummy argument to the translate() function. Table 4.7 shows the built-in
interpolation types.

4.4.2 Creating a New Transform

Having now addressed some of the fundamental issues that arise when transforming images, we
now turn our discussion to how one might formulate and implement a new image transformation
algorithm.

In the most general sense, a transform is computed by performing the following two steps for
every pixel in the output image.

• Given the coordinates Xout of a pixel in the output image, apply a transformation that yields
the coordinates Xin of a source pixel in the input image.

• Use some edge extension and interpolation scheme to determine the pixel value of the input
image at Xin (it may fall in between integer pixels coordinates or outside of the input image
entirely) and set the value of the output image at Xout to this value.

When formulating a new image transformation algorithm, the first step where all of the in-
teresting work happens. The code for interpolation and edge extension is important, but usually
incidental to the transformation under development. Ideally, one would focus exclusively on writing
code to perform the geometric calculations in step one. To help us with this task, we will introduce
a new programming idiom that appears commonly in the Vision Workbench: the functor.

Technically, a functor is a C++ class that has implemented the operator() method. Once
created, such a class can be called and passed around in place of a normal C++ function. It
behaves identically except that, as a C++ object, the functor can maintain its own state (possibly
initialized when the functor is constructed). In the Vision Workbench, we use this definition more
loosely to mean any small function object that adheres to a small, pre-determined interface. But,
rather than linger over semantic details, let’s jump straight to an example so that you can see what
we mean.

Let’s look at the definition for the functor that describes image translation, shown in Listing 3.
You’ll notice that this class has defined three methods: a constructor and two methods called
forward() and reverse(). The class also inherits from TransformBase<>, but that’s not something
to dwell on here. For now just be aware that TransformBase<> provides default implementations
that throw vw::UnimplErr() exceptions in case the subclass does not implement both methods.

The constructor is used to initialize the state of this functor; in this case, an offset in x and y.
The reverse() method is the most important. It performs step one in our list at the beginning of
this section. Pretty simple, right? Although the transformation in this example is nothing special,

4.4. TRANSFORMING OR WARPING IMAGES 47

1 // __BEGIN_LICENSE__
2 // Copyright (C) 2006, 2007 United States Government as represented by
3 // the Administrator of the National Aeronautics and Space Administration.
4 // All Rights Reserved.
5 // __END_LICENSE__
6
7
8 class TranslateTransform : public TransformBase<TranslateTransform> {
9 double m_xtrans, m_ytrans;

10 public:
11 TranslateTransform(double x_translation, double y_translation) :
12 m_xtrans(x_translation) , m_ytrans(y_translation) {}
13
14 // Given a pixel coordinate in the ouput image, return
15 // a pixel coordinate in the input image.
16 inline Vector2 reverse(const Vector2 &p) const {
17 return Vector2(p(0) - m_xtrans, p(1) - m_ytrans);
18 }
19
20 // Given a pixel coordinate in the input image, return
21 // a pixel coordinate in the output image.
22 inline Vector2 forward(const Vector2 &p) const {
23 return Vector2(p(0) + m_xtrans, p(1) + m_ytrans);
24 }
25 };

Listing 3: [transform-functor.h] An example transform functor that performs image translation.

the reverse() method could potentially be long and complicated. So long as it returns a pixel
position in the input image in the end, we’re happy.

The forward() method performs the inverse operation of the reverse() method. This method
is not always necessary. We’ll discuss it more in Section 4.4.3.

The beauty of the TranslateTransform class, or any other class that defines a set of forward()
and reverse() methods is that it can be passed as an argument to the transform() function.

result_image = transform(input_image,
TranslateTransform(u_translation, v_translation));

This block of code performs the very same transformations as our call to translate() in the
previous section. (In fact, translate() is just a thin wrapper around transform() provided for
convenience.) As with the previous example, the edge extend and interpolation modes can be
supplied as dummy arguments to transform().

As you can probably now see, the possibilities are endless! For example, we could also have used
HomographyTransform (another built-in transform functor) to describe the same translation. The
linear homogeneous transform that encodes a 100 pixel shift to the right is:

H =




1 0 100
0 1 0
0 0 1



 (4.1)

48 CHAPTER 4. IMAGE PROCESSING

Dropping the HomographyTransform into transform() yields the same result_image once
again.

vw::Matrix<double> H = ... // defined as above
result_image = transform(input_image, HomographyTransform(H));

Any transform functor that adheres to this simple interface, including one of your own devising,
can be passed into transform. To summarize, you can create and use your own transformation
functor foo by following these steps.

• Inherit from public TransformBase<foo>

• Define a constructor that stores any state information that you need

• Define a reverse() method

• Define a forward() method (optional, see Section 4.4.3)

Of course, some of the most common transform functors are provided for you as part of the Vision
Workbench. Refer to Table 4.8 for a list of built-in classes available in <vw/Image/Transform.h>

Type Function Description

ResampleTransform resample() Scale an image, resizing the output image as needed
TranslateTransform translate() Translate an image
HomographyTransform Apply a linear homogeneous transformation (3x3 Matrix)
PointLookupTransform Apply a transformation based on a lookup table image
PointOffsetTransform Apply a transformation based on an offset table image

Table 4.8: Built-in transform functors and (if available) their function interface.

4.4.3 Advanced Techniques

To wrap up our discussion of the transform methods, here are some advanced techniques that you
may find useful when working with image transformations.

It is not uncommon to ask, for a given transform functor, what bounding box in the transformed
image space contains the complete set of transformed pixels. The compute_transformed_bbox()
routine answers this question by performing the forward() transformation for each pixel location
in the input image and growing a bounding box to contain all of the forward transformed pixels.
This bounding box can be passed directly as the second argument to crop().

// Output image is cropped to contain all transformed pixels
BBox2f result_bbox = compute_transformed_bbox(input_image,

MyTransformFunctor());
result_image = crop(transform(input_image, MyTransformFunctor()),

result_bbox);

For performance limited applications, you may find compute_transformed_bbox_fast() more
appropriate. It computes the bounding box by applying forward() to the perimeter pixels of
the input image only. This should produce identical results to the “slow” version so long as the

4.5. PIXEL MASK 49

perimeter pixels of the input image form the perimeter of the output image under the transformation
in question.

Finally, we would like to point out the existence of the RadialTransformAdaptor class. This
class is useful when it is easier or more natural to describe a transformation in terms of polar
coordinates [r, θ] instead of the usual cartesian coordinates [u, v].

To use RadialTransformAdaptor, you write your transform functor as usual, but you interpret
the components in the input and output Vector2 to be [r, θ], in that order. Assuming you have
created a class MyRadialTransform in this manner, you can apply it as follows:

result_image = transform(input_image,
RadialTransformAdaptor(MyRadialTransform(),

input_image));

The RadialTransformAdaptor creates a polar coordinate system wherein the center of the
image is the origin, and a value of r = 1.0 is equal to the distance from the center to the left edge
of the image.

4.5 Pixel Mask

At this point is best to introduce a new pixel type, PixelMask. It was convientantly hidden from
the previous chapter as it is not exactly just another pixel type. It does infact though still have
that same blue collar past of the others from Table 3.2 and that means all operations the previous
Pixel types could do, PixelMask can do as well. PixelMask just happens to append an additional
boolean channel value to what ever pixel type it encapsulates.

Type Description Channels

PixelMask<PixelT<T> > Additional valid bit One plus whatever PixelT is

Table 4.9: An addendum to standard Vision Workbench pixel types. PixelT should generally be
one of the types from Table 3.2 and T should generally be from Table 3.1.

This additional boolean channel is a pixel’s validity. During FileIO the boolean channel can
correctly be interpreted as determining if a pixel is transparent or not. This may seem as just a
redundant binary version of an alpha channel and it can correctly be interpreted as this. Yet it has
one ability that an alpha channel does not. The state of a PixelMask being invalid is quite like the
’T’ virus from Resident Evil fame. It spreads to all other PixelMasks it is operated with. Meaning
that given an image that has bad pixels in it, they can be labelled as invalid and will remain so
through all operations.

A PixelMask passes all of it access functions on to its inner pixel type. So that a pixel[0]
will still return a red channel from a pixel of type PixelMask<PixelRGB<float> >. Yet remember
that it adds and an additional channel. So a PixelMask’s validity can be access with pixel[3] or
instead with a pixel.valid().

Testing for a pixel’s validity via a pixel.valid() only works if a pixel is a PixelMask. But what
if a function is written generally for all pixels and it must test for a valid pixel like blob_index?
In that case, Vision Workbench provides a series of commands for working with a pixel validity
despite the type. They are listed in Table 4.10.

Lastly, Vision Workbench provides a number of ImageView operators working pixel validity.
They are listed in Table 4.11.

50 CHAPTER 4. IMAGE PROCESSING

Function Description

is_transparent(PixelT) Tests if a pixel is transparent. In other words, not valid.
is_valid(PixelT) Tests as expected.
validate(PixelT) Forces a pixel valid iff PixelMask. Otherwise no-op.
invalidate(PixelT) Forces a pixel invalid iff PixelMask

toggle(PixelT) Changes the state of validity iff PixelMask

remove_mask(PixelT) Strips off the PixelMask wrapper and returns the inner pixel type.

Table 4.10: Pixel type safe functions for working with a PixelMask’s valid bit.

Function Description

create_mask(im,s) Given a non PixelMask view im, returns an ImageView of type
PixelMask. Pixels of valud s are listed as invalid.

create_mask(im,lo,hi) As previously, except lo and hi describe the valid pixel range. Pixels
outside of that range are listed as invalid.

apply_mask(im,s) This removes the PixelMask type, and replaces invalid pixels with a
value s.

copy_mask(im,mask) Copies an image mask’s transparency on to an image im of non-
PixelMask type.

mask_to_alpha(im) Convert a PixelMask view to a view with a alpha channel.
edge_mask(im) Searches for the edges of an image and marks the first valid pixel,

invalid.
invert_mask(im) Given an image of PixelMasks , inverts every pixels validity.
validate_mask(im) Forces all pixels to be valid.
invalidate_mask(im) Forces all pixels to be invalid.
union_mask(im,mask) Unions the PixelMask of mask with im, and keeping the image data in

im.
intersect_mask(im,mask) Intersects the PixelMask of mask with im, and keeping the image data

in im.

Table 4.11: Image operations for working with PixelMasks

Chapter 5

Vision Workbench Type System

The Vision Workbench is an example of what is often called a “multi-paradigm” C++ library. That
is, different components of the library adopt different C++ programming models, such as the generic
programming model or the object-oriented programming model, often in combination. At the core,
however, is a set of data types and related tools that fall largely within the template-based generic
programming paradigm. The purpose of this chapter is to describe this core type system in some
detail. If your intention is simply to use the Vision Workbench for image processing tasks you can
probably afford to skim or even skip this material. The primary intended audience is programmers
who wish to extend the Vision Workbench’s core capabilities in one way or another.

Data types in the Vision Workbench can be broadly divided into three categories: the funda-
mental data types, including the simple numeric types; the compound types, such as RGB pixel
types and vectors; and the container types, such as images. We shall discuss each of these in turn.
(Other C++ types, such as functors, do make an appearance in the Vision Workbench, but these
are not data types per se.)

5.1 The Scalar Types

The most fundamental data types of all are the built-in C++ integral and floating-point numeric
types. In scientific programming contexts like image processing and machine vision it is generally
important to be able to specify the exact nature of the numeric data types that you are working
with. Unfortunately the C++ language makes few promises about the sizes of data types such as
int or even char. To work around this limitation, the Vision Workbench provides a number of
portable typedefs that you are encouraged to use instead. These are listed in Table 5.1. (In fact
most of these data types are simple wrappers around similar types provided by the Boost cstdint
library.)

The Vision Workbench uses standard C++ complex numbers, as defined in the standard header
file <complex>. The std::complex<> class takes a single template parameter, the underlying
numeric type to be used for the real and imaginary components, which should usually be one of the
scalar types listed in Table 5.1. In particular, it is almost always best to use one of the floating-
point types for complex numbers. For example, std::complex<float64> is a good choice for use
in frequency-domain image processing (discussed in Section 14.7).

There is a special type trait template, IsScalar<>, that you can use in template code to
determine whether or not a type is a simple numeric type like we have described in this section. It
inherits from either boost::true_type or boost::false_type accordingly. Its primary use is to
prevent template functions such as scalar multiplication from being too general:

51

52 CHAPTER 5. VISION WORKBENCH TYPE SYSTEM

Type Description Notes

int8 Signed 8-bit integer
uint8 Unsigned 8-bit integer Most common for low-dynamic-range imaging
int16 Signed 16-bit integer
uint16 Unsigned 16-bit integer
int32 Signed 32-bit integer
uint32 Unsigned 32-bit integer
int64 Signed 64-bit integer
uint64 Unsigned 64-bit integer
float32 32-bit floating point Most common for high-dynamic-range imaging
float64 64-bit floating point

Table 5.1: The core Vision Workbench scalar typedefs, defined in <vw/FundamentalTypes.h>.

Class Description

SumType<T1,T2> Result type of a sum operation
DifferenceType<T1,T2> Result type of a difference operation
ProductType<T1,T2> Result type of a product operation
QuotientType<T1,T2> Result type of a quotient operation

Table 5.2: The Vision Workbench type deduction classes, defined in <vw/TypeDeduction.h>.

template <class ScalarT>
typename boost::enable_if< IsScalar<ScalarT>, MyClass >::type
operator*(MyClass const& m, ScalarT s) {
/* compute result */

}

In this example we use the Boost enable_if library to restrict the definition of the * operator to
cases where the second argument really is a scalar. Without this restriction this would have been
an overly-general function definition and would likely have caused problems if we had attempted
to defined any other product for the MyClass class later on. If you decide to extend the Vision
Workbench to support additional scalar types, such as bigints, you should specialize IsScalar<>
accordingly to ensure proper behavior.

5.2 Type Deduction

The C++ language has many intricate rules for type promotion and deduction in complex mathe-
matical expressions. Unfortunately it provides no built-in mechanism to extend this automatic type
deduction system or query its behavior. Consider adding two images with compatible but different
pixel types: what should the resulting pixel type be? The Vision Workbench provides a standard
set of type deduction traits classes, defined in <vw/TypeDeduction.h> and listed in Table 5.2, that
allow you to both query and specialize the type deduction behavior of Vision Workbench types.
Like all Vision Workbench type computation classes, they “return” their result types in a member
type named type.

As a trivial example, imagine writing a template function that simply computes the sum of its
two arguments. What should its return type be? We can use SumType<> to compute it:

5.3. THE PIXEL TYPES 53

Type Description Channels

PixelGray<T> Grayscale Grayscale value (v)
PixelGrayA<T> Grayscale w/ alpha Grayscale value (v), alpha (a)
PixelRGB<T> RGB Red (r), green (g), blue (b)
PixelRGBA<T> RGB w/ alpha Red (r), green (g), blue (b), alpha (a)
PixelHSV<T> HSV Hue (h), saturation (s), value (v)

Table 5.3: The Vision Workbench color-space pixel types, defined in <vw/PixelTypes.h>.

Syntax Description

PixelChannelType<PixT>::type The pixel type’s underlying channel type
PixelNumChannels<PixT>::value The number of channels in the pixel type

PixelChannelCast<PixT,ChT>::type The same pixel type with a new channel type

PixelIsCompound<PixT> Is the pixel type a compound type?
PixelMakeReal<Pixt>::type Converts to the corresponding real channel type

PixelMakeComplex<Pixt>::type Converts to the corresponding complex channel type

Table 5.4: The pixel traits and pixel type computation classes.

template <class T1, class T2>
inline typename SumType<T1,T2>::type sum(T1 a, T2 b) {
return a + b;

}

Remember that the C++ language does not allow this to be fully automatic. If you define a new
type with an unusual addition operator, you will need to manually specialize SumType<> at the
same time. However, the most common default behaviors are provided. For example, any built-in
type is assumed to be promoted to any user-defined type, and any user-defined type operating with
itself is assumed to return itself. These type deduction classes do also replicate the standard C++
promotion behavior when used with the built-in numeric types.

5.3 The Pixel Types

It is possible to use any of the fundamental scalar types described in the previous section as an
ImageView’s pixel type. However in most circumstances a compound pixel type, consisting of
one or more channels with associated semantics, is more appropriate. The Vision Workbench
provides several compound pixel types corresponding to the most common color spaces used in
image processing. These are listed in Table 5.3. Each is a template class taking one template
parameter, the scalar type used to store the channels. For example, the native pixel type of a
standard JPEG image is represented by PixelRGB<uint8>.

Several type trait classes are provided for use in writing generic pixel manipulation code and are
listed in Table 5.4. The first section of the table lists the classes that you must specialize when you
write a new compound pixel type. The second section of Table 5.4 lists convenience types that are
defined in terms of the other, specialized types. For example, here is how the types are specialized
for the RGB pixel type:

template <class ChannelT>

54 CHAPTER 5. VISION WORKBENCH TYPE SYSTEM

struct PixelChannelType<PixelRGB<ChannelT> > {
typedef ChannelT type;

};

template <class ChannelT>
struct PixelNumChannels<PixelRGB<ChannelT> > {
static const unsigned value = 3;

};

template <class OldChT, class NewChT>
struct PixelChannelCast<PixelRGB<OldChT>, NewChT> {
typedef PixelRGB<NewChT> type;

};

When you define a new pixel type, you will usually want to define a provide a similar set of template
specializations. To simplify the process, a macro is provided that you can use to automatically
specialize the templates in the usual manner:

VW_DECLARE_PIXEL_TYPE(PixelRGB, 3);

This macro expands to the same set of template specializations shown above, describing a pixel
type named PixelRGB with three channels.

Note that it is not necessary to declare a type using this macro, or even to provide specializations
for the traits templates described above, just to use that type as the pixel type for an image. These
specializations are only necessary if you want to declare a type with multi-channel semantics. For
any other type, the default Vision Workbench behavior is to treat the type as a single-channel pixel
type whose channel type is equal to the type itself.

Several convenience functions are also provided to simplify working with pixels in generic tem-
plate functions. The first is the pixel_channel_cast<>() function, which casts a pixel to a pixel
of the corresponding pixel type but with the specified channel type. The syntax mirrors the built-in
C++ casting functions, except the template parameter is the new channel type instead of the new
type as a whole. In the following example we explicitly down-cast the channel type of a pixel from
float64 to float32 in order to pass it to a function that happens to take a PixelRGB<float32>
argument:

PixelRGB<float64> pixel;
some_function(pixel_channel_cast<float32>(pixel));

Note that this is not needed in the more common case that the function that you wish to call is
itself generic and can accept any channel type.

Sometimes it is desirable to apply a function to each channel of a pixel, or to corresponding
channels from two pixels. Re-scaling a pixel or adding two pixels on a per-channel basis can be cast
into this form, for example. You can use the generic function apply_per_pixel_channel() to do
this. Here is a trivial example that demonstrates re-scaling:

float32 triple(float32 v) { return 3*v; }
// Later, in some other function...
PixelRGB<float> pixel(.1,.2,.3);
PixelRGB<float> result = apply_per_pixel_channel(&triple,pixel);

5.3. THE PIXEL TYPES 55

In this case it would have been simpler to multiply the pixel by 3 directly, but the point is that we
could have performed any arbitrarily complex operation on each channel instead. The binary form
simply takes an extra pixel argument:

float32 sum(float32 a, float32 b) { return a+b; }
// Later...
PixelRGB<float> pixel1(.1,.2,.3), pixel2(.2,.1,.4);
PixelRGB<float> result = apply_per_pixel_channel(&sum,pixel1,pixel2);

56 CHAPTER 5. VISION WORKBENCH TYPE SYSTEM

Chapter 6

Core Module

The Core Module contains fundamental tools for building good software infrastructure.

6.1 Vision Workbench Exceptions

The Vision Workbench is intended in part to be used in flight systems, experimental multiprocessor
systems, or other environments where exceptions may not be fully supported. As a result, the use
of exceptions within the Vision Workbench is tightly controlled. In particular, the exception usage
rules were designed to minimize the imact on platforms that do not support exceptions at all. There
is a standard Vision Workbench ”exception” class hierarchy which is used to describe errors and
can be used even on platforms that do not support the C++ exception system.

The vw::Exception class serves as a base class for all VWB error types. It is designed to make
it easy to throw exceptions with meaningful error messages. For example, this code:

vw_throw(vw::Exception() << "Unable to open file \"" << filename << "\"!");

would generate a message like this:

terminate called after throwing an instance of ’vw::Exception’
what(): Unable to open file "somefile.foo"!

Note that in the example the exception was thrown by calling the vw_throw() function rather
than by using the C++ throw statement. On platforms that do support C++ exceptions the
default behavior for vw_throw() is to throw the exception in the usual way. However, the user
can provide their own error-handling mechanism if they choose. For example, the default behavior
when exceptions are disabled is to print the error text to stderr and call abort().

There are a number of standard exception types that derive from vw::Exception. These are
shown in Table 6.1. In the above example, the exception should probably have been of type
vw::IOErr.

Also, two macros, VW_ASSERT(condition,exception) and VW_DEBUG_ASSERT(condition,exception),
are provided, with the usual assertion semantics. The only difference is that the debug assertions
will be disabled for increased performance in release builds when VW_DEBUG_LEVEL is defined to zero
(which happens by default when NDEBUG is defined).

Exceptions are enabled or disabled based on the value of the VW_ENABLE_EXCEPTIONS macro de-
fined in vw/config.h. This value can be set by passing the command line options --enable-exceptions

57

58 CHAPTER 6. CORE MODULE

Function Description

ArgumentErr Invalid function argument exception
LogicErr Incorrect program logic exception
InputErr Invalid program input exception
IOErr IO (usually disk IO) failure exception
MathErr Arithmetic failure exception
NullPtrErr Unexpected NULL pointer exception
TypeErr Invalid type exception
NotFoundErr Not found exception
NoImplErr Unimplemented functionality exception
Aborted Operation aborted partway through

Table 6.1: Vision Workbench exception types that derive from vw::Exception. All behave like C++
output stream classes, so you can associate an error message with the exception using the stream
operator.

(the default) or --disable-exceptions to the configure script prior to building the Vision Work-
bench. This option also sets an automake variable called ENABLE_EXCEPTIONS which may be used
by the build system to conditionally compile entire source files.

In either case the default behavior of vw_throw() may be overridden by passing a pointer to a
user-defined object derived from ExceptionHandler to vw::set_exception_handler(). The user
specifies the error-handling behavior by overriding the abstract method handle().

6.2 The System Cache

The Vision Workbench provides a thread-safe system for caching regeneratable data. When the
cache is full, the least recently used object is invalidated to make room for new objects. Invalidated
objects have had the resource associated with them (e.g. memory or other resources) deallocated
or freed, however, the object can be regenerated (that is, the resource is regenerated automatically
by the cache) when the object is next accessed.

The vw::Cache object defined in src/vw/Core/Cache.h can be used to store any resource. For
example, one common usage would be to create a cache of image blocks in memory. In this case,
the cache enforces a maximum memory footprint for image block storage, and it regenerates the
blocks (e.g. reloads them from a file on disk) when necessary if a block is accessed.

One can also cache more abstract resource types, such as std::ofstream objects pointing at open
files on disk. The following section describes this use case in detail.

6.2.1 Example: Caching std::ofstream

Consider a situation wherein your system needs to open and read from tens of thousands of tiny
files on disk. There is a high degree of locality of access, meaning that once you start reading from
a file, you are likely to read from it again in the near future, but that likelihood diminishes as time
goes on. It is impractical to simply open all of the files at once (this would eat up memory in your
program, plus there is a hard limit in most operating systems on the number of open files you can
have at any one time). However, it could potentially be very slow to close and re-open the file each
time you attempt to read from it because of the time it takes to parse the file header or seek to the

6.2. THE SYSTEM CACHE 59

correct location.
This situation calls for a cache.
We begin by specifying a generator class whose sole purpose is to regenerate the resource if it

is ever necessary to reopen it. In this case, our class contains a generate() method that return a
shared pointer to a newly open ifstream.

class FileHandleGenerator {
std::string m_filename;

public:
typedef std::ifstream value_type;

FileHandleGenerator(std::string filename) : m_filename(filename) {}

// The size is useful when managing items that have
// a known size (e.g. allocated blocks in memory).
// When caching abstract items, like open files, the
// size does not matter, only the total number of open
// files, hence the size in this case is 1.
size_t size() const { return 1; }

// Generate is called whenever there is a cache miss. In
// this example, we reopen the file in append mode.
boost::shared_ptr<value_type> generate() const {
return boost::shared_ptr<value_type> (new std::ifstream(m_filename, ios::app));

}
};

Next, we create a vw::Cache object for storing instances of our FileHandleGenerator class.
The cache itself can be declared without knowing the type of the generator(s) that will be inserted
into it. The vw::Cache constructor takes only one argument specifying the size of the cache. This
value will be used in conjunction with the size() methods its cache generators to determine when
the cache is full. If the sum of the size() values from valid generators exceeds the max cache size,
the least recently used cache generator is invalidated to make room for a new call to generate().

// This cache maintains up to 200 open files at a time.
static vw::Cache filehandle_cache(200);

// Insert a ifstream generator into the cache and store a handle
// so that we can access it later.
Cache::Handle<FileHandleGenerator> file_ptr;
file_ptr = filehandle_cache().insert(GdalDatasetGenerator(filename));

// ... time passes ...

// We access the file generator like a pointer. The cache
// will re-open the file if necessary.
char[2048] line_from_file;
*file_ptr.get_line(line_from_file, 2048);

60 CHAPTER 6. CORE MODULE

Note in this example that our call to insert() returns a Cache::Handle<> object that “points
at” the cache’s version of the ifstream object. The cache handle behaves like a pointer, and we can
use it just as we would a normal C++ pointer to a std::ifstrem. However, if the cache closes the
file at any point to make room for other files, this cache handle ensures that the file is regenerated
(re-opened) the next time we try to access it.

6.2.2 Performance Considerations and Debugging

Use of a cache can greatly increase the efficiency of a program by storing information that would be
expensive to regenerate for as long as possible. However, depending on the size of the cache and the
pattern you are using to access it, one can inadvertently end up in a situation where performance
may suffer considerably.

For example, consider a scenario where you have a DiskImageView<> that points at a very large
(22,000x22,000 pixels) 8-bit RGB image that is stored in a file format with a block size of 2048x2048
pixels. The DiskImageView<> caches these block as the image is accessed, and each block takes
96-MB of memory.

If we access the DiskImageView<> one scan line at a time (during a rasterization operation, for
example), the cache will need to store at least 22, 000/2048 = 10 blocks in memory for efficient
access (i.e our cache size must be ¿= 960-MB). If the cache is too small, the left-most image blocks
in the row will be invalidated by the cache to make room for the right-most blocks, and vice versa as
we traverse each scanline of the DiskImageView<>. Given that it takes a few seconds to regenerate
each block, this would be hugely inefficient.

If your code is running much, much slower than you expect, you may have a similar cache miss
problem. You can debug this by observing the “cache” log namespace using the system log (see
Section 6.3 for details). The cache subsystem logs debugging information whenever cache handles
are invalidated or regenerated. Use these messages to get a gross idea of how the cache is performing.

6.3 The System Log

As the Vision Workbench has become more parallelized, and as new subsystems (e.g. caching, fileio,
threadpool management, etc.) have been added, it has become increasingly challenging to monitor
and debug the code base. The Vision Workbench log class was designed to address the evolving
needs of VW developers and users alike. The following design guidelines summarize the features of
the system log facility provided in vw/Core/Log.h.

• Thread Safety: Log messages are buffered on a per-thread basis so that messages form
different threads are correctly interleaved one line at a time in the log output.

• Log Granularity: Users will want to monitor different subsystems at different times. Each
log message includes an associated log namespace and log level. Used in conjunction with the
the LogRuleSet class, the log namespace and level allow the user to monitor only the log
messages that concern them

• Multiple Log Streams: Log messages can be directed either to the user’s terminal, one or
more files on disk, or both at the same time. Each log stream has its own LogRuleSet, so it
is possible to tailor the log output that appears in each file.

6.3. THE SYSTEM LOG 61

• Runtime Log Adjustment: When something goes wrong in the middle of a long job, it is
undesirable to stop the program to adjust the log settings. The VW log framework will reload
the log settings from the ~/.vwrc file (if it exists) every 5 seconds, so it is possible to adjust
log settings during program execution. See Section 6.3.2 below.

6.3.1 Writing Log Messages

Logging in the Vision Workbench is simple. Just call the vw_out(log_level, log_namespace)
command, which will return a basic_ostream object that you can stream into using the standard
C++ << operator. For example,

// Record the default number of Vision Workbench threads to the log
int num_threads = vw::Thread::default_num_threads();
vw_out(vw::InfoMessage, "thread") << "The default number of threads is " << num_threads << "\n";

This would generate a log message that looks something like this.

2007-Dec-28 14:31:52 {0} [thread] : The default number of threads is 8.

The log message includes an infostamp consisting of the timestamp, the unique id of the thread
that generated the log message, and the log_namespace specified as an argument to vw_out.

<date> <time> {<thread_id>} [<log_namespace>] : <log_message>

Note that, for aesthetic reasons, log messages that go to the console only print the log_message
after the colon; the infostamp is omitted. A new infostamp is prepended to the log stream each
time vw_out() is called.

Take note of the newline character at the end of stream to vw_out() in the example above.
The logging framework will cache the log message until it sees the newline at the end of a call to
operator<<, at which point the log stream is flushed, and newline is written, starting a new line
in the log file. Therefore, it is highly recommended that you end every log message with a newline
character (or std::endl).

6.3.2 The Log Configuration File

The log configuration file can be used to change the Vision Workbench logging behavior in real-time,
even while your program is running.

Every five seconds, or when a log message is generated using vw_out() (whichever is longer, the
system log checks to see if the logconf file has been modified. If so, it erases all log streams and log
rules, and reloads these settings from the file. If you modify the file while your program is running,
you will see your changes take affect anywhere from 0-5 seconds from the time that you save your
changes.

Using the file, you have full control over the system log: you can create as many log streams to
files as you like, and you can adjust the log rules for both the console log and the log file streams.
Note that syntax errors and malformed statements are silently ignored by the log configuration file
parser, so check your file carefully for errors prior to saving.

An example log configuration file appears in Listing 4.

62 CHAPTER 6. CORE MODULE

6.3.3 System Log API

If you would rather not use the log configuration file, you can adjust the system log settings directly
by accessing the singleton instance of the vw::Log class using vw::system_log(). Once you have
done this, you can explicitly add (or clear) new log streams (or LogInstance objects, in the parlance
of the API), and you can adjust log rule sets (using the LogRuleSet) class.

Consult the API documentation for vw/Core/Log.h for more information.

6.3. THE SYSTEM LOG 63

1 # This is an example VW log configuration file. Save
2 # this file to ~/.vwrc to adjust the VW log
3 # settings, even if the program is already running.
4 #
5 # The following integers are associated with the
6 # log levels throughout the Vision Workbench. Use
7 # these in the log rules below.
8 #
9 # ErrorMessage = 0

10 # WarningMessage = 10
11 # InfoMessage = 20
12 # DebugMessage = 30
13 # VerboseDebugMessage = 40
14 #
15 # You can create a new log file or adjust the settings
16 # for the console log:
17 #
18 # logfile <filename>
19 # - or -
20 # logfile console
21 #
22 # Once you have created a logfile (or selected the
23 # console), you can add log rules using the following
24 # syntax. (Note that you can use wildcard characters
25 # ’*’ to catch all log_levels for a given log_namespace,
26 # or vice versa.)
27 #
28 # <log_level> <log_namespace>
29 #
30 # Example: For the console log, turn on InfoMessage
31 # logging for the thread sub-system and log every
32 # message from the cache sub-system.
33
34 [general]
35 default_num_threads = 8
36 system_cache_size = 2048
37
38 [logfile console]
39 20 = thread
40 * = cache
41 20 = stereo
42 VerboseDebugMessage = *
43
44 # Turn on DebugMessage logging for both subsystems
45 # to a file on disk.
46 [logfile /temp/vw_test.log]
47 40 = cache
48 40 = thread

Listing 4: [LogConf.example] An example log configuration file.

64 CHAPTER 6. CORE MODULE

Chapter 7

Camera Module

Cameras are the interface between images and the real world, and as such, their importance in
computer vision cannot be understated. In fact, some would say that computer vision algorithms
are distinguished by the fact that they endeavor to associate the processed pixel data with objects in
the real world for the purposed of measurement, tracking, or display. This is achieved by modeling
the geometric and physical properties of the device that was used to capture the original image.
This is the purpose of the camera module.

The camera module includes built-in models for generic pinhole and line-scan imagers and a
set of generic functions for linearizing (removing lens distortion) and epipolar rectifying (e.g. for
stereo) when these operations are relevant. These classes and functions can be imported into your
code by including <vw/Camera.h>.

Because you will likely encounter new camera geometries not supported by the built-in classes,
the camera module is designed to be extensible. You can provide your own camera model by
inheriting from and adopting the interface of the CameraModel abstract base class, which is defined
in the header file <vw/Camera/CameraModel.h>.

Finally, the camera module provides a basic set of tools for working with images from real-world
camera systems: bayer pattern filtering and EXIF parsing. We will cover all of these features in
more detail, but we begin this chapter by establishing some terminology while exploring the most
common camera geometry in use today: the pinhole camera model.

7.1 The Pinhole Camera Model

The pinhole camera model describes the geometry found in nearly all commercial digital camera
systems today. It is characterized by a lens assembly that focuses light onto a two dimensional
array of pixels (usually a sensor with light sensitive circuits such as a CCD or CMOS device). We
will use the pinhole model to establish some terminology that will be used throughout the rest of
this chapter. Be warned that the model we are about to develop is simplistic; many of the non-ideal
characteristics of a real-world optical system (e.g. lens distortion) are not modeled in this simple
example. Refer to the CAHVOR model in Section 7.3 if you require a pinhole camera model that
more accurately models lens distortion.

7.1.1 Perspective Projection

Figure 7.1 shows the geometry of a basic pinhole camera. The light gray area represents the 2D
array of pixels, and it is referred to as the image plane. The origin of the 3D coordinate system is

65

66 CHAPTER 7. CAMERA MODULE

C

Y

X

Z

(x,y,z)

f

(pu,pv)

(u,v)

+u

+v

(0,0)

Image Plane

O

Figure 7.1: The basic pinhole camera model.

the point C, which is the center of projection or camera center of the imager. When a 3D point O
is imaged by the camera, it appears at the pixel located where segment OC intersects the image
plane at point (u, v). A line segment OC that is perpendicular to the image plane intersects this
plane at the principal point, (pu, pv).

All of the points imaged by the camera appear on a line that passes through C. If the coordinates
of O are (x, y, z), then the position of the point on the imager can be determined by projecting it
onto the plane z = +f :

u =
f

σ

(
x

z

)
− pu (7.1)

v =
f

σ

(−y

z

)
− pv (7.2)

Here, f is the focal length of the imager in meters, σ is the size of a pixel in m/pixel, and (pu, pv)
are the offset in pixels of the principal point (this offset moves the origin of the image from the
principal point to the upper left hand corner, which is the “origin” usually adopted when indexing
images).

Equations 7.1 and 7.2 constitute the forward projection portion of the camera model; this is
analogous to the process of “capturing” an image with a real camera. Our model should tell us
exactly what what pixel location to look at if you wanted to see the point O in the image.

Notice how some information is lost during forward projection. Any point along OC will be
imaged to the same point (u, v) on the image plane, so if we were to start with a point P = (u, v)
on the image plane, and we wanted to find the original 3D point O, the best we could do would
be to say that it appears somewhere along the ray

−→
CP . The origin and direction of the ray can be

computed as follows:

7.2. THE CAMERA MODEL BASE CLASS 67

−→
CP origin = C (7.3)

−→
CP direction =

(u + pu,−(v + pv), f)

||(u + pu,−(v + pv), f)||2
(7.4)

This operation, which we call back projection, can still provide useful information that can be
used in a full 3D reconstruction despite the ambiguity in the actual position of O. Imagine that
you have two cameras that have imaged the same point O from two different viewpoints at pixel
locations P1 and P2 in their respective image planes. Using simple geometry, you can reconstruct
the position of O by computing the intersection of the two rays emanating from each camera center
through P1 and P2. This is the technique commonly referred to as stereo reconstruction, and it is
one of the many ways that you can make use of the information provided by back projection.

7.2 The Camera Model Base Class

As we have seen, a camera model provides a means for forward projection (“imaging” 3D points
onto a 2D array of pixels) and back projection (finding the ray along which a 3D points must lie
given a 2D pixel where it was imaged). All camera models in the Vision Workbench derived from
the CameraModel abstract base class, which enforces this basic interface.

Forward projection of a 3D point is handled by the point_to_pixel() method.

CameraModel* camera_model = new MyDerivedCameraModelClass;
Vector3 world_coordinates;
Vector2 pixel_coordinates = camera_model.point_to_pixel(world_coordinates);

The back projection operation is split into two separate API calls. The camera_center()
method returns the origin of the ray, and the pixel_to_vector() method returns its direction.
Remember that any of the points that lie along this ray would have been imaged at (u, v), so this
pixel-to-ray operation leaves some ambiguity about the true location of the point O.

CameraModel* camera_model;
Vector3 ray_origin = camera_model.camera_center(pixel_coordinates);
Vector3 ray_direction = camera_model.pixel_to_vector(pixel_coordinates);

Camera Coordinate Systems

Vision Workbench camera model classes take and return coordinates that are not homoge-
neous. That is, coordinates do not need to augmented with an additional homogeneous scaling
element before being passed to camera module routines (e.g. a 2D vector (325, 206) in cartesian
coordinates is often represented as (325, 206, 1) in homogeneous coordinates). Homogeneous
coordinates have certain advantages in projective geometry (e.g. they allow a translation of the
coordinates to be encoded as a matrix multiplication), however we have chosen not to adopt this
convention.

68 CHAPTER 7. CAMERA MODULE

Camera Model Header File Imager Type Details
CAHV CAHVModel.h Pinhole Basic pinhole camera model
CAHVOR CAHVORModel.h Pinhole Models lens distortion
Linescane LinescanCameraModel.h Linescan Generic Linescan Model
Linear Pushbroom LinearPushbroomModel.h Linescan Assumes linear flight path
Orbiting Pushbroom OrbitingPushbroomModel.h Linescan Models curvature of orbit

Table 7.1: Built-in camera models can be found in vw/Camera/

7.3 Built-in Camera Models

The Vision Workbench comes with several “built-in” camera models. These classes satisfy the
needs of most common applications, and they can also serve as a design reference for your own
camera model classes. Each class models a specific geometry and, to varying extents, the non-ideal
characteristics of the camera system such as lens distortion.

The list of built-in models are summarized in Table 7.3. The following sections describes the
two basic classes of built-in camera model: those that model pinhole cameras (where the imager
is a 2D array of pixels), and those that model linescan cameras (where the imager is a 1D line of
pixels).

7.3.1 Pinhole Cameras

The CAHV camera model has been widely used in NASA planetary mission for rover navigation
and scientific camera systems [4]. It is a basic pinhole camera model that does not model lens
distortion or other optical aberrations. The CAHV model is so named because the camera intrinsic
and extrinsic parameters are jointly parameterized by four 3-dimensional vectors: C,A,H, and V.
This compact representation leads to a very efficient forward projection operation, which is the
strength of the CAHV model. Forward projection of a real world point O can be computed using

u =
(O − C) · H
(O − C) · A (7.5)

v =
(O − C) · V
(O − C) · A (7.6)

The user has two choices when initializing a CAHV camera model. First, they can construct
the object by directly supplying four 3-vectors to the constructor.

Vector3 C,A,H,V;
CameraModel* cam = new CAHVModel(C,A,H,V);

Alternatively, users seeking to use the CAHV class as a general purpose pinhole camera model
may find it easier to use the more verbose constructor wherein the camera extrinsics and intrinsics
are explicitly supplied.

double focal_length;
Vector2 pixel_size;
double principal_point_h, principal_point_v;

7.3. BUILT-IN CAMERA MODELS 69

Vector3 camera_center, pointing_vector;
Vector3 horizontal_vector, vertical_vector; // Defines image plane orientation

CameraModel* cam = new CAHVModel(focal_length, pixel_size, principal_point_h,
principal_point_v, camera_center,
pointing_vector, horizontal_vector,
vertical_vector);

The CAHVOR model is an expanded camera model with two additional 3-vectors (O and R)
that describe lens distortion introduced by the camera lens.

Refer the Doxygen-generated API documentation for more information about constructing
CAHV and CAHVOR camera models.

7.3.2 Linescan Cameras

Linescan imagers capture images using a sensor containing a 1-dimensional array of pixels. The
image is formed by capturing successive scan-lines as the camera platform is rotated or moved.
For example, a flat-bed scanner or photocopier is a familiar example of such a system. The sensor
is swept in the so-called along-track direction along the document, composing the final image by
concatenating several thousand adjacent 1-dimensional images taken at evenly spaced positions.

Linescan sensors are fairly uncommon in commercial camera systems, but they appear frequently
on satellites that capture photographs of terrain from orbit. The orbital motion of the satellite is
used in much the same way as the motion of the sensor in the photocopier; the across-track dimension
of the image corresponds to the projection of 3D points through the lens onto the sensor, and the
along-track dimension of the image corresponds to successive scanlines taken at different times as
the satellite moves.

The geometry of the linescan imager is subtly different from the geometry of the pinhole camera.
See Figure 7.2. Although there is still a center of projection created by the camera’s optics (and
points are still imaged using a perspective projection in the across-track direction), this point moves
as the camera moves, and as a result, the along-track position of a pixel in a linescan image is purely
a function of the position and orientation of the camera; both a function of time. The orientation
of the image (in the sense that u indexes the columns of an image and v indexes its rows) must be
chosen consistent with Figure 7.2 when working with LinescanModel and its relatives.

In the special case where the motion of the linescan sensor is linear and its orientation is fixed,
the projection of the points onto the image in the along-track direction is orthographic. These
assumptions are the basis for the Linear Pushbroom Model, which can be found in the header
file <vw/Camera/LinearPushbroomModel.h>. If you are interested in understanding this model in
detail, we recommend you read the excellent paper by Gupta and Hartly [2].

If you must relax the assumption about a linear flight path somewhat to allow sensor pose to
vary and the camera motion to lie along a curve (as is common with orbiting camera systems), the
Orbiting Pushbroom Model is an appropriate choice. In the Orbiting Pushbroom model, the user
supplies a series of evenly spaced samples of position and orientation and specifies the time interval
(in seconds) between samples. A sparse set of samples is sufficient for this model: interpolation
occurs for points in between the supplied positions and orientations.

70 CHAPTER 7. CAMERA MODULE

C

Z

X

Y

(x,y,z)

f

(pu,pv)

(u,v)
+u

+v
(0,0)

Image Plane

O

Perspective Axis

Instantaneous center

of projection

Orthographic Axis

Direction of camera motion

Figure 7.2: Geometry of the Linescan Camera Model.

7.4 Tools for Working With Camera Images

This section describes several tools that simplify the process of working with image captured by
real cameras.

7.4.1 Inverse Bayer Pattern Filtering

Most imaging sensors are inherently grayscale capture devices. In order to capture color, some
imagers have a hardware color filter placed in front of the pixels on the CCD. This is called a Bayer
filter. The Vision Workbench provides the inverse_bayer_filter() function (found in the header
file <vw/Camera/BayerFilter.h>) which interprets the raw, grayscale pixel values from the sensor
and produces a color image by interpreting the Bayer filter effect.

7.4.2 Exif Exposure Data

Digital cameras store data about the settings used to take a picture in the image file according to
the EXIF standard [1]. EXIF data is stored using the Image File Directory system described in the
TIFF 6.0 standard. EXIF tags such as FNumber and ExposureTime can be useful for radiometri-
cally calibrating your camera images. Unfortunately the standard is redundant and often poorly
supported by camera manufacturers (for example, many hide the ISO setting in the maker note
instead of storing it in the ISOSpeedRatings tag), so we cannot guarantee support for every camera.

The Camera module includes the ExifView class (defined in <vw/Camera/Exif.h>) for extract-
ing this data from images. To create this class, you supply the filename of an image on disk.

7.4. TOOLS FOR WORKING WITH CAMERA IMAGES 71

Currently, JPEG and TIFF images are supported. ExifData and ExifView were based on jhead,
an EXIF JPEG header and thumbnail manipulator program in the public domain [3].

// Reliably get F number.
ExifView view;
if (view.load_exif(‘‘img.jpg’’)) {
double f = view.get_f_number();
// ...

}

72 CHAPTER 7. CAMERA MODULE

Bibliography

[1] “Exchangeable image file format for digital still cameras: Exif Version 2.2”,
(Japan Electronics and Information Technology Industries Association, 2002),
http://www.exif.org/specifications.html.

[2] Gupta, Rajiv and Hartley, Richard. “Linear Pushbroom Cameras”. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence. Vol.19 No. 9. September 1997

[3] Wandel, Matthias, “Exif Jpeg header and thumbnail manipulator program,” 2006,
http://www.sentex.net/ mwandel/jhead/.

[4] Yakimovsky, Y. and Cunningham R., “A System for Extracting Three-Dimensional Measure-
ments from a Stereo Pair of TV Cameras ” Computer Graphics and Image Processing 7, pp.
195-210. (1978)

73

74 BIBLIOGRAPHY

Chapter 8

Mosaic Module

The Mosaic module provides a number of tools for assembling and generating image mosaics, i.e.
large images that are composed of a number of smaller images. The applications of this module
include panoramic imaging and aerial/satellite image processing. There are three major facilities
provided at this time: compositing many images together, using multi-band blending to seamlessly
merge overlapping images, and generating on-disk image quad-trees to efficiently store very large
images.

Note that the facilities described in this chapter are currently under active development, and
there may be some API changes in future releases as new capabilities are added.

8.1 ImageComposite and Multi-Band Blending

The ImageComposite template class provides the ability to composite any number of source images
together at arbitrary pixel offsets. It was originally designed for assembling tiled panoramas or
aerial/satellite images that have been transformed into a common coordinate system, though it can
be used for many other things as well.

The interface is fairly simple. Just like ordinary Vision Workbench images, an ImageComposite
is templatized on its pixel type. In most cases you will want to use a pixel type that has an alpha
channel, and if you want to perform image blending then the pixel type must be floating-point, so
the most common pixel type is PixelRGBA<float32>. You can then configure whether you would
like to use multi-band blending to merge your images or if you would simply like them overlayed by
using the set_draft_mode() method. It takes a single argument which should be true if you simply
want to overlay the images and fales if you want to use the blender. Blending is a significantly
more expensive operation. If your images are simply tiles and do not overlap then draft mode
is probably what you want. In blending mode you also have the option of asking the blender to
attempt to fill in any missing (i.e. transparent) data in the composite using information from the
neighboring pixels. You can enable or disable this behavior by calling the the set_fill_holes()
method.

Once you have created the composite object, you add source images to it using the insert()
method, which takes three arguments: the image you are adding, and the x and y pixel offset of that
image within the composite. The ImageComposite does not store a copy of your image. Instead, it
only stores a reference to it in the form of an ImageViewRef object. This means that you can easily
do things like create a composite of images that could not all fit in memory simultaneously, e.g. by
passing in DiskImageView objects. Note that only integer pixel offsets are supported: if you want
to shift an image by a fractional amount you will first need to transform it accordingly. In most

75

76 CHAPTER 8. MOSAIC MODULE

(a) First source (b) Second source (c) Blended result

Figure 8.1: Example input and output images from the ImageComposite multi-band blender.1

cases you will need to pre-transform your source images anyway, so this applies no extra cost.
Once you have added all your images, be sure to call the ImageComposite’s prepare() method.

This method takes no arguments, but it does two things. First, it computes the overall bounding
box of the images that you have supplied, and shifts the coordinate system so that the minimum
pixel location is (0, 0) as usual. (For advanced users, if you prefer to use a different overall bounding
box you may compute it yourself and pass it as an optional BBox2i argument to the prepare()
method.) Second, if multi-band blending is enabled, it generates a series of mask images that are
used by the blender. Currently these are saved as files in the current working directory. This is
admittedly inconvenient behavior and will be changed in a future release.

Now that you’ve assembled and prepared your composite you can use it just like an ordinary
image, except that per-pixel access is not supported. If the image is reasonably small then you can
rasterize the entire image by assigning it to an ImageView. Alternatively, if the composite is huge
the usual next step is to pass it as the source image to the quad-tree generator, discussed in the
next section. You can also use ImageComposite’s special generate_patch() method to manually
extract smaller regions one at a time. It takes a single BBox2i bounding-box, expressed in the
re-centered coordinate frame, as its only argument.

Here’s a simple example that illustrates how you might blend together a number of images on-
disk. It assumes you already know the image filenames and their offsets within the composite, and
that the total composite is small enough to sensible rasterize all at once.

ImageComposite<PixelRGBA<float> > composite;
for(int i=0; i<num_images; ++i) {
composite.insert(DiskImageView<PixelRGBA<float> >(image_filename[i]),

image_offset[i].x(), image_offset[i].y());
}
composite.prepare();
write_image("composite.png", composite);

For a somewhat more fleshed-out example of how to blend images, see the example program
blend.cc included with the Mosaic module sources.

8.2. IMAGEQUADTREEGENERATOR 77

8.2 ImageQuadTreeGenerator

The ability to assemble composites that are far larger than could be stored in memory all at once
presents serious challenges. When viewing an image of that size, the ability to zoom in and out is of
critical importance. Only a small fraction of the image data will ever be on-screen at a time at full
resolution. However the entire data set may be visible at once at lower resolutions, and computing
such reduced images on the fly can be prohibitively expensive. The usual solution to this problem
is to pre-compute sub-sampled versions of the image at multiple levels of detail. The sub-sampling
factors are often chosen to be successive powers of two, and the data at each resolution is typically
chopped up into tiles for faster direct access.

The ImageQuadTreeGenerator class generates just such a representation of an image. You
specify the tile size, the generator reduces the image by powers of two until it fits in a single tile.
To generate each successive level of detail every tile is replaced by four tiles at twice the resolution.
The resulting quad-tree of images is stored on disk in a hierarchical manner, making it easy to
instantly access any tile at any resolution.

Like many things in the Vision Workbench, an ImageQuadTreeGenerator is templatized on
its pixel type. The constructor takes two arguments, the pathname of the tree to be created on
disk and the source image. You can then use several member functions to configure the quad-tree
prior to generating it. The set_bbox() method, which takes a single BBox2i parameter, specifies
that a particular region of the source image to be processed instead of the entire thing. The
set_output_image_file_type() method sets the file type of the generated image files; the default
is “png”. The set_patch_size() function takes an integer argument specifying the patch size
in pixels. Relatedly, the set_patch_overlap() function specifies how many pixels of the border
of each patch overlap the neighboring patch. The default is 256-pixel patches with no overlap.
Finally, the set_crop_images() method takes a boolean argument that controls whether or not
the resulting images are cropped to the non-transparent region. Image cropping is enabled by
default.

Once you have configured the ImageQuadTreeGenerator to your liking you can invoke its
generate() method to generate the quad-tree on disk. It is stored in a directory with the name
you provided as the first argument to the constructor with the extension “.qtree” appended. For
example, if you specified the name of the quad-tree as /home/mdh/example then the result is stored
in the directory /home/mdh/example.qtree. This directory typically contains three things. First is
the lowest-resolution image of the tree, essentially a thumbnail, which is stored in an image with the
same base name as the tree with the appropriate image file format extension appended. To continue
the above example, if the file format type is “png” then the top-level image file’s pathname will be
/home/mdh/example.qtree/example.png. The next file in the top-level directory is a simple text
file describing the bounding box of the top-level patch, with the same name but with the extension
.bbx instead. The format of this file will be discussed below. Finally there is a subdirectory, which
has the same name but no extension, that contains the next level of the tree.

Inside that subdirectory there are generally four image files, with names 0.png, 1.png, 2.png,
and 3.png, containing to the four image patches at the second level of detail. The patches are num-
bered left-to-right and top-to-bottom, so 0 is the upper-left patch, 1 is the upper-right patch, and
so on. There are also four corresponding .bbx files and four directories containing higher-resolution
data for each patch. Each subdirectory likewise has four numbered images, bounding boxes, and
further subdirectories. For example, the file /foo/bar/myimage.qtree/myimage/0/1/3.png would

1Original hand and face source images by sheldonschwartz and vidrio, respectively, and released under the
Creative Commons license.

78 CHAPTER 8. MOSAIC MODULE

(a) Draft mode (simple overlay)

(b) Multi-band blending

Figure 8.2: A twelve-image mosaic composited using an ImageMosaic object, first (a) in draft mode
and then (b) using multi-band blending.

8.2. IMAGEQUADTREEGENERATOR 79

Figure 8.3: Patches at three successive resolutions generated by an ImageQuadTreeGenerator
constructed with the name “Walker”. The files are named Walker.qtree/Walker.png,
Walker.qtree/Walker/1.png, and Walker.qtree/Walker/1/2.png, respectively.

be an image at the fourth level of detail. The subdirectories at the highest level of detail have no
further subdirectories. Note that if cropping is enabled then it is possible that some directories will
not have all four images; this occurs if any of the images is entirely empty.

Each .bbx file contains eleven numbers, represented as text strings, each on a line by itself.
The first is the scale factor of that tile: it has the value 1 for the highest-resolution patches and
values of the form 2n for lower-resolution patches. You can equivalently think of this number as
describing the size of each pixel at this resolution, as measured in full-resolution pixels. The next
four numbers describe the bounding box of the patch within the full-resolution coordinate system.
First are the x and y coordinates of the upper-left pixel, and then come the width and height of
the image in pixels. To reiterate, these are measured in full-resolution pixels, and so these numbers
will generally be multiples of the scale factor.

After this come a similar set of four numbers describing the bounding box of the unique image
data in this patch. This is generally the same as the previous bounding box if there is no patch
overlap. However, if the patch overlap has been set to a nonzero value then this second bounding
box will describe the portion of this patch that does not overlap the corresponding regions of the
neighboring patches. In other words, taken together these second bounding boxes perfectly tile the
entire image without overlap. Finally, the last two values describe the width and height of the entire
source image in pixels.

This file format is obviously quite arbitrary, and was designed to make it easy to write scripts
to manipulate the quadtree data later. If you prefer, you can subclass the quadtree generator and
overload the write_meta_file() function to generate metadata of a different sort.

80 CHAPTER 8. MOSAIC MODULE

Chapter 9

High Dynamic Range Module

Photographers have long understood that the range of brightness levels in a real-world scene is
considerably larger than the range that can be captured by a camera’s film or imaging sensor.
The luminance of a outdoor scene can easily span five orders of magnitude, however typical dig-
ital cameras encode the brightness at a single pixel location using a modest 8-bits (2 orders of
magnitude). Pixels that fall outside the dynamic range of the camera sensor will either be underex-
posed or overexposed; their values will be at the minimum or maximum pixel value of the camera,
respectively.

Some digital cameras can save RAW images with higher dynamic range. These cameras can
capture 12 bits per pixel, or 4096 brightness levels. This expanded dynamic range is often sufficient
to capture scenes with a moderate amount of contrast. However, to capture scenes with very high
dynamic range, you must generate a HDR image from a set of bracketed exposures: a group of low
dynamic range images of the exact same scene taken with different exposure settings that vary from
under-exposed to over-exposed. This technique is subject of section 9.1.

The resulting HDR image is generally stored with a channel type of float or int16 to ac-
commodate the expanded dynamic range. To store HDR images on disk we recommend using the
OpenEXR or TIFF file formats, both of which support 32-bit floating point channel types.

Just as capturing HDR images can be challenging, visualizing them is also difficult. Print media
and most display devices can only manage about 2 orders of magnitude of dynamic range, whereas
an HDR image may have 5 or more orders of magnitude. Simply scaling the image to the display
range will cause it to look overly dark or washed-out. Section 9.2 discusses a technique called tone
mapping that reduces the dynamic range of an image while preserving as much as possible the visual
contrasts of the original scene.

9.1 Merging Bracketed Exposures

As discussed in the introduction to this chapter, the limited dynamic range of the sensors on modern
cameras necessitates a different strategy for building true HDR images: exposure bracketing. This
frees us from hardware limitations and allows us to set the dynamic range of the output image
arbitrarily by adjusting the number of exposures in the bracket. The more exposures in the bracket,
the higher the dynamic range merged HDR image.

For convenience, the exposure ratio between consecutive images is usually a fixed value to
guarantee a wide exposure range while maintaining even brightness overlap between adjacent images
in the bracket. A factor of two is generally recommended. The shutter speed is generally the
preferred method of varying the exposure in a bracket; changing the aperture or ISO setting can

81

82 CHAPTER 9. HIGH DYNAMIC RANGE MODULE

Figure 9.1: A stack of 8-bit-per-channel LDR images separated by one f-stop is merged a floating-
point HDR image. The HDR image is tone-mapped for display using the Drago operator.

9.1. MERGING BRACKETED EXPOSURES 83

have the same effect on exposure but they may change the focus or increase noise.

9.1.1 Converting LDR Images to an HDR Image

The HDR module has a set of free functions that make stitching a stack of LDR images into an
HDR image as simple as one function call. process_ldr_images() (in <vw/HDR/LDRtoHDR.h>)
takes a std::vector of ImageViews (with grayscale or RGB pixels and a floating point channel
type), sorted from darkest to brightest. This function assumes a constant exposure ratio between
images; it can be specified or the default value of

√
2 can be used (corresponding to 1 f-stop, or a

power of two in shutter speed). An overloaded version accepts a std::vector<double> of absolute
brightness values for each image (as defined by the APEX system [6]) .

// Generate HDR image from HDR stack.
vector<ImageView<PixelRGB<double> > > images(num_images);

// ... Read input images ...

// Assum default exposure ratio
ImageView<PixelRGB<double> > hdr_image = process_ldr_images(images);

Most modern digital cameras store exposure information as EXIF metadata in the headers of
images. The Vision Workbench supports reading this data from TIFF and JPEG files via the
Camera Module, and the routine process_ldr_images_exif() capitalizes on this, generating an
HDR image from an array of filenames of LDR images by computing brightness values from the
files’ EXIF data along the way.

9.1.2 The Camera Response Curves

The relationship between light entering a camera sensor and the pixel value that is recorded in the
image is a non-linear. It depends on many factors, including the degree of gamma correction used
in the image, the color balance across the range of brightness, and the camera’s post processing
settings (especially contrast). The function that encompasses all of these and maps the amount of
light on the sensor (the luminance) to the pixel value is referred to as the camera response curve.
See Figure 9.2 for an example.

To create a HDR image that truly represent the physical brightness levels in a scene, it is
necessary to estimate the inverse of the camera response curves (we assume a separate curve for
each channel) and apply it to the image data. That is, we would like to find a function that, given
a pixel value in the image and its exposure information, returns the luminance of the scene at that
point. <vw/HDR/CameraCurve.h> implements estimate_inverse_camera_curve(), a free function
that estimates the inverse response curve as a polynomial. This routine takes a matrix of aligned
pixel channel values from an HDR stack and their brightness ratios. This function is used internally
by LDRtoHDR.h; most users will probably not need to call it directly.

The CameraCurve sources also supply invert_curve(), a free function that approximates the
inverse of a polynomial curve, also as a polynomial. This is useful to recover the actual camera
response curve (mapping a scaled luminance value to a pixel value) from the inverse response curve
determined by estimate_inverse_camera_curve(). Re-applying the camera response curve to an
HDR image after tone-mapping can improve the colors and overall visual appeal. See the code in
Listing 5 for an example.

84 CHAPTER 9. HIGH DYNAMIC RANGE MODULE

 0

 50

 100

 150

 200

 250

 0 0.2 0.4 0.6 0.8 1

Pi
xe

l v
al

ue

Scaled radiance

Response(x)

Figure 9.2: Camera response curve estimated from an HDR stack.

9.2 Tone Mapping

Since print media and most display technologies are inherently LDR, the dynamic range of a HDR
image must be compressed before it can be displayed. Simply scaling the pixel luminances linearly
yields poor results because the human visual system’s response to luminance is approximately
logarithmic rather than linear. A linear scaling tends to lose small details and local contrast, and
the image as a whole will appear under or over-exposed.

A wide variety of tone-mapping operators have been proposed to compress the dynamic range of
a HDR image while preserving details and local contrast as much as possible. Using an ideal tone-
mapping operator, the observer of a tone-mapped LDR image would have a perceptual response
matching that of the original HDR scene. Due to its greater realism, tone-mapping can vastly
improves the appearance of the displayed image.

There are several broad classes of tone-mapping operators, including global operators, local
operators, and operators that use the gradient or frequency domains. The HDR module currently
includes one global operator and one local operator; they are described in the following sections.

9.2.1 Global Operators

Global tone-mapping operators apply the same compressive function to all pixels in the image.
Such operators are implemented in <vw/HDR/GlobalToneMap.h>. Currently one such operator is
implemented, the Drago Adaptive Logarithmic Mapping operator. For algorithm details see High
Dynamic Range Imaging [9] or the original paper [3]. The Drago operator is currently the operator
of choice in the HDR module. It is quite fast, produces good results for a wide range of images,
and can usually be used with its parameters at default values. Optionally, the parameters bias

9.2. TONE MAPPING 85

Figure 9.3: Top: an image taken in 12-bit RAW format. Middle: after tone-mapping with the
Drago operator. Bottom: after tone-mapping with the Ashikhmin operator.

86 CHAPTER 9. HIGH DYNAMIC RANGE MODULE

(controlling contrast, usually between 0.7 and 0.9), exposure factor (a simple multiplier to control
the overall brightness of the image), and max display luminance (usually about 100) can be specified.

// Apply Drago tone-mapping operator
ImageView<PixelRGB<float> > tone_mapped = drago_tone_map(hdr_image);

9.2.2 Local Operators

Local tone-mapping operators compress a pixel’s dynamic range in a way dependent on the neigh-
borhood of pixels around it. These operators mimic the local adaptation of the human eye and
are capable of more striking or artistic results than global operators, but they are also susceptible
to artifacts such as excessive haloing and reverse gradients. <vw/HDR/LocalToneMap.h> currently
implements the Ashikhmin local tone-mapping operator [1]. It is much slower than the Drago op-
erator and more prone to artifacts, but may be useful for some images. Its only parameter is a
threshold value (0.5 by default) which roughly controls the size of the neighborhood used for each
pixel. A threshold value too large will result in haloing.

// Apply Ashikhmin tone-mapping operator
ImageView<PixelRGB<float> > tone_mapped = ashikhmin_tone_map(hdr_image);

9.3 Command Line Tools

The HDR module builds two small utilities for working with HDR images from the command
terminal. If you simply type these command names with no arguments, you will see a list of
acceptable arguments.

• hdr_merge : Merge LDR images into one HDR image

• hdr_tonemap : Tonemap an HDR image using the Drago operator

9.4 Other Resources

There are a number of freely available utilities which are useful for working with HDR images. The
OpenEXR distribution [5] includes several utilities, including exrdisplay for displaying OpenEXR
images. exrtools [2] provides utilities for converting between OpenEXR and other formats, per-
forming basic operations on OpenEXR images, and a couple of tone-mapping utilities. pfstools
[7] is a well-integrated set of utilities for reading, writing, manipulating and viewing HDR images.
It has an associated pfstmo project that implements seven of the more prominent tone mapping
operators.

9.4. OTHER RESOURCES 87

1 // __BEGIN_LICENSE__
2 // Copyright (C) 2006, 2007 United States Government as represented by
3 // the Administrator of the National Aeronautics and Space Administration.
4 // All Rights Reserved.
5 // __END_LICENSE__
6
7
8 #include <vw/vw.h>
9 #include <stdio.h>

10 #include <vector>
11 using namespace vw;
12 using namespace vw::HDR;
13
14 int main(int argc, char** argv) {
15 std::vector<Vector<double> > curves;
16 std::vector<string> files;
17 for(int i = 1; i < argc; i++)
18 files.push_back(argv[i]);
19 // Process HDR stack using Exif tags
20 ImageView<PixelRGB<double> > hdr_exif = process_ldr_images_exif(files,
21 curves);
22 write_image("hdr.exr", hdr_exif);
23
24 // Apply Drago tone-mapping operator.
25 ImageView<PixelRGB<double> > tone_mapped = drago_tone_map(hdr_exif);
26 write_image("tm.jpg", tone_mapped);
27
28 // Apply gamma correction and save.
29 ImageView<PixelRGB<double> > gamma = pow(tone_mapped, 1.0/2.2);
30 write_image("tm_gamma.jpg", gamma);
31
32 // Re-apply camera response curves and save.
33 // First must invert curves calculated earlier.
34 std::vector<Vector<double> > inverse_curves(curves.size());
35 for (int i = 0; i < curves.size(); i++) {
36 invert_curve(curves[i], inverse_curves[i],
37 VW_HDR_RESPONSE_POLYNOMIAL_ORDER);
38 }
39 psi(tone_mapped, inverse_curves);
40 write_image("tm_curved.jpg", tone_mapped);
41
42 // Apply gamma correction after response curves.
43 // Usually gives best results.
44 ImageView<PixelRGB<double> > tm_c_g = pow(tone_mapped, 1.0/2.2);
45 write_image("tm_c_g.jpg", tm_c_g);
46
47 return 0;
48 }

Listing 5: [ExifHDRExample.cc] This is a simple test program that stitches an Exif-tagged HDR
stack into an HDR image, performs tone-mapping, and saves several versions with different post-
processing applied for comparison. Usually the best image is produced by re-applying the camera
response curves and then gamma correcting.

88 CHAPTER 9. HIGH DYNAMIC RANGE MODULE

Bibliography

[1] Ashikhmin, Michael, “A Tone Mapping Algorithm for High Contrast Images,” Eurographics
Workshop on Rendering, 2002: 1–11.

[2] Biggs, Billy, “exrtools: a collection of utilities for manipulating OpenEXR images,”, 2004,
http://scanline.ca/exrtools/.

[3] Drago et al., “Adaptive Logarithmic Mapping For Displaying High Contrast Scenes,” Euro-
graphics, 22(3), 2003.

[4] Fattal, Raanan, et. al, “Gradient Domain High Dynamic Range Compression,” ACM Transac-
tions on Graphics, 2002.

[5] Industrial Light and Magic, “OpenEXR,” (Lucasfilm Ltd., 2006), http://www.openexr.com.

[6] Kerr, Douglas, “APEX–The Additive System of Photographic Exposure,” 2006,
http://doug.kerr.home.att.net/pumpkin/APEX.pdf.

[7] Mantiuk, Rafal, and Grzegorz Krawczyk, “pfstools for HDR processing,” 2006, http://www.mpi-
inf.mpg.de/resources/pfstools/.

[8] Reinhard, Erik, et. al. “Photographic Tone Reproduction for Digital Images,” ACM Transactions
on Graphics, 2002.

[9] Reinhard, Erik, Greg Ward, Sumanta Pattanaik, and Paul Debevec, High Dynamic Range Imag-
ing, (Boston: Elsevier, 2006).

[10] Ward, Greg, et al., “A Visibility Matching Tone Reproduction Operator for High Dynamic
Range Scenes,” IEEE Transactions on Visualization and Computer Graphics, 1997.

89

90 BIBLIOGRAPHY

Chapter 10

Cartography Module

[Note: The documentation for this chapter is not yet complete...]

The earliest robots in space were not planetary rovers – they were unmanned probes that studied
the planetary bodies in our solar system from afar. Today there are roughly twenty extraterrestrial
spacecraft in active communication with earth (and only two planetary rovers), so the bulk of the
extraterrestrial data that we receive consists of imagery that originated on round(ish) surfaces. The
natural thing to do with this data is to merge it together into a map, but when doing so we are
faced with the same problem that has plagued cartographers for hundreds of years: how does one
flatten the globe? This is the job of the Vision Workbench Cartography module: to make maps.

Before diving into an introduction on planetary cartography, we will point out another problem
that is relatively new to Cartography. The amount of map data that we have collected about
Earth and the other bodies in our solar system is immense. It is often impossible to store an entire
mapping data set in memory all at once, so intelligent paging, caching, and storage strategies must
be used in order to make working with this data tractable. For this reason, the Cartography module
is particularly powerful when used in conjunction with Mosaic module (see Chapter 8), which is
designed to efficiently process and combine extremely large data sets.

We will begin this chapter with a quick summary of the third party libraries that are needed
to compile the Vision Workbench. We will then describe the GeoRefence class, which creates a
relationship between pixel coordinates in an image and coordinates on a globe. Next, we will discuss
the GeoTransform class, which provides a simple means of re-projecting map data. We finish this
section with methods for reading and writing image files with embedded geospatial metadata.

10.1 Software Dependencies

The Cartography module is currently built on top of two third party libraries:

• GDAL [http://www.remotesensing.org/gdal/]

• Proj.4 [http://proj.maptools.org/]

In order to enable the Cartography module, you must have these libraries installed on your
system before you configure and build the Vision Workbench. You may need to use the PKG_PATHS

91

92 CHAPTER 10. CARTOGRAPHY MODULE

directive in the config.options file if you install them in a non-standard location as discussed in
Chapter 2.

Once the library for the Cartography module has been built, the header files for GDAL and
Proj.4 are no longer needed, so you can rely solely on linking in libraries when building your own
application.

10.2 The GeoReference Class

When you point at a location on a map, you probably want to know where that location can be
found in the real world. This relationship depends first and foremost on the familiar notion of
a map’s scale. However, this relationship is also affected by a subtle, but extremely important
dependence on how the map is projected. That is, the image depicts a scene that sits on the surface
of a spheroid. However, the image is flat, so at best it represents a very slightly distorted view of
the surface.

One can imagine all sorts of different ways that the surface can be warped or projected onto
a flat plane (or, at the very least, projecting onto a manifold that can be unfolded into a plane
without distorting distances and areas – a sphere cannot be unfolded in this way). Generations of
cartographers have struggled with this topological challenge, and as a result they have developed
many different ways to “un-fold” the globe so that it can be represented as a flat image. Rather
than attempt a description of these many techniques here, we suggest you look at this excellent
web site describing all aspects of map projections.

http://www.progonos.com/furuti/MapProj/CartIndex/cartIndex.html

The Proj.4 manual is also recommended as a reference for the specific map projections supported
by the Vision Workbench.

Now would be a good time to take a break from reading this section of the documentation to
look over these references. When you return, we will dive into some code examples.

10.2.1 The Datum

A Vision Workbench GeoReference object is composed of three items:

• The Projection: As discussed above, this is the technique used to represent the round globe
in a flat image.

• The Affine Transform: This is the geometric transformation between pixel coordinates in
the image to coordinates in the map projection space.

• The Datum: Describes the approximate shape of the planetary body, as either a sphere or
an ellipsoid.

10.2.2 The Affine Transform

Let’s start by being explicit about the coordinate systems we will be working with. For images, we
adopt the usual Vision Workbench coordinate system wherein the upper left corner of the image is
the origin, the u coordinate increases as you move right along the columns of the image, and the v
coordinate increases as you move down the rows.

10.3. GEOSPATIAL IMAGE PROCESSING 93

Method Description

set_sinusoidal() Sinusoidal Projection
set_mercator() Mercator Projection
set_orthographic() Orthographic Projection
set_stereographic() Stereographic Projection
set_UTM() Universal Transverse Mercator (UTM) Projection (Earth only)

Table 10.1: Currently supported GeoReference map projections.

For a planetary body, the coordinate of a point on the surface is typically measured in latitude,
longitude, and radius (φ, θ, r). Lines of latitude are perpendicular to the axis of rotation and are
measured from the center line, the equator (+/-90 degrees). Lines of Longitude are vertical, passing
through both the North and South poles of the planet. It is measured from a vertical arc on the
surface called the meridian. We will generally adopt an East positive frame of reference (latitude
increases to the east of the meridian 0-360 degrees). Finally, the radius is measured from the point
to the planet’s center of mass. Note that this coordinate system is similar but not identical to
spherical coordinates in a mathematical sense, where “latitude” would be measured from the North
pole rather than the equator.

Under this set of assumptions, if we have a point Pimg = (u, v) in the image, and we want to
relate it to some planetary coordinates

10.2.3 Putting Things Together

10.3 Geospatial Image Processing

10.3.1 The GeoTransform Functor

10.4 Georeferenced File I/O

10.4.1 DiskImageResourceGDAL

94 CHAPTER 10. CARTOGRAPHY MODULE

Chapter 11

Interest Point Module

[Note: Parts of this documentation may no longer applicable...]

Interest points are unique point identifiers with in an image. There are usually many of them in
an image and what defines them changes based on the algorithm used. For the most part though,
interest points are defined at places where a corner exists, where at least 2 edges come together.

Interest points are helpful in locating the same feature in multiple images. There are 3 major
parts to using interest points. First, all images are processed with some interest point / corner
detection and all points are recorded. Secondly, all of the points found from the first step now have
a unique identifier built for them that properly describes the feature and it texture surroundings.
Lastily, captured interest points are compared across images. Features on separate images that
have identifiers that seem approximately equal are then connected into a match file.

Uses for interest points are general corner detection, object recognition, and image alignment.
The last one, image alignment, is a common use used within Vision Workbench. Using fitting
functors that will be described later, transform matrices can be solved for to describe the relationship
between images and later merge them (see <vw/Image/TransformView.h>). Also as a side note,
interest points can be used for measurements for a bundle adjustment that would solve for the
original placement of the cameras (see <vw/Camera/BundleAdjust.h>).

The interest point module includes a complete set of classes and functions for each step of interest
point detection. They can be imported into your code by including <vw/InterestPoint.h>. The
built-in classes ScaledInterestPointDetector and SimpleInterestPointDetector (defined in
<vw/InterestPoint/Detector.h>) provide out-of-the-box support for detecting interest points,
with or without scale space methods.

The interest point module is designed to be as flexible as possible in that it decouples each step in
the process of interest point detection. Different interest measures and thresholding methods, built-
in or user-defined, can be used with the InterestPointDetector classes. ScaledInterestPointDetector
and SimpleInterestPointDetector can both easily be subclassed to further customize their oper-
ation, for example by implementing an alternative method for finding peaks in the interest image.

The interest point module also provides tools for generating descriptors to compactly describe
the properties of an interest point.

95

96 CHAPTER 11. INTEREST POINT MODULE

11.1 Scale Space Methods

When detecting interest points, we want them to be invariant to changes in view perspective. The
scale space is a standard tool for making a detection algorithm scale invariant [2].

The interest point module provides support for scale space detection methods based on the
ImageOctave class. An octave is a subset of the scale space. It is a set of images (scales) formed by
convolving the source image with Gaussian kernels having progressively larger standard deviations;
the sigma used for the last scale in the octave is twice that used for the first scale. Given a source
image and a number of scales per octave, ImageOctave will construct the first octave of the scale
space of the source image. Successive octaves can be constructed with the build_next() method.

ImageView<double> source;
int scales_per_octave;
ImageOctave octave(source, scales_per_octave);
// Process first octave...
// Then build the second octave
octave.build_next();

Building the next octave is a destructive operation, as the previously computed octave data
is not saved. If you need to retain all of the scaled images generated, e.g. for use in generating
descriptors, ImageOctaveHistory can be used to store this data.

11.2 Measuring Interest

The interest point module includes both classes and free functions for computing interest images
from source images using the standard Harris [1] and LoG (Laplacian of Gaussian) interest measures.
They can be imported by including the file vw/InterestPoint/Interest.h.

The HarrisInterest and LoGInterest classes are intended for use in conjunction with the Inter-
estPointDetector classes (next section). Creating your own interest measure classes for use with
the Detector classes is straightforward. Subclass the InterestBase abstract base type. In the con-
structor, set InterestBase<T>::type to IP_MIN, IP_MAX or IP_MINMAX, depending on what type of
peaks in the generated interest image represent interest points. Then overload the abstract virtual
method compute_interest with your implementation of the interest measure.

11.3 The Interest Point Detector Classes

The InterestPointDetector classes in <vw/InterestPoint/Detector.h> form the heart of the in-
terest point module. They integrate the various components of the module into an easy all-in-one
interface for detecting interest points.

The InterestPointDetector class itself is an abstract base class. Two implementations of its
interface are supplied, ScaledInterestPointDetector and SimpleInterestPointDetector. The
Scaled version uses scale space methods, while the Simple version does not; otherwise they are
identical. When constructing either type of detector, you specify an interest measure class and a
thresholding class. Built-in thresholding classes are defined in <vw/InterestPoint/Threshold.h>.

LoGInterest<float> log;
InterestThreshold<float> thresholder(0.0001);

11.4. FLOW OF DATA 97

ScaledInterestPointDetector<float> detector(&log, &thresholder);
std::vector<InterestPoint> points = interest_points(src, &detector);

11.4 Flow of Data

Although designed primarily for flexibility, the interest point module takes care not to sacrifice
efficiency by unnecessarily recomputing internal images such as gradients. If you take advantage of
the module’s flexibility by customizing its framework (for example, by implementing a new interest
measure class), you will probably make use of ImageInterestData, a struct which holds a source
image and several interesting related images, such as gradients and interest.

11.5 Generating Descriptors

A descriptor of an interest point represents the local image region around the point. It should be dis-
tinctive as well as invariant to factors such as illumination and viewpoint. The interest module con-
tains basic functions and classes for generating descriptors in <vw/InterestPoint/Descriptor.h>.

Generating a descriptor for an interest point requires knowledge of the point’s source image.
Different descriptor classes may require different source data. The trivial PatchDescriptor uses
only the source ImageView as its source data.

SimpleInterestPointDetector<float> detector(&harris, &thresholder);
std::vector<InterestPoint> points = interest_points(source_image,

&detector);
PatchDescriptor<float> pd;
generate_descriptors(points, source_image, pd);

Properly generating descriptors for interest points found with ScaledInterestPointDetector
is more involved, as various blurred versions of the source image may be required to provide local
image regions for interest points at different scales.

ScaledInterestPointDetector<float> detector(&log, &thresholder);
ImageOctaveHistory<ImageInterestData<float> > history;
detector.record_history(&history);
SIFT_Descriptor<float> sd;
generate_descriptors(points, history, sd);

11.6 Matching

Aliens have abducted this section. Are you man enough to save it? Huh, Punk?

11.7 RANSAC

RANdom SAmple Consensus (or RANSAC) is a method for sifting through messy data to remove
outliers. RANSAC starts with the goal of fitting some objective to a mass of data. In the case
of interest points it is usually fitting some transform matrix to represent to move of points from

98 CHAPTER 11. INTEREST POINT MODULE

one image’s coordinate frame to another. The algorithm works by randomly selecting a minimal
number of matches and fitting an initial transform to this small selected set. It then proceeds to to
grow the initial set of matches from with matches from the original pool whose error stays within an
inlier threshold. This process of randomly selecting a minimal set, fitting, and growing is repeated
many times. The round that produced the most inliers is kept for a final stage where a better
fitting algorithm can be applied to the entire final pool of matches. The transform solved on the
last step is considered best solution that correctly maps the inliers. This shotgun method, though
not efficient, gives the ability for coping with a large percentage of outliers. Yet, also be aware that
it is entirely possible that in a worst case scenario, RANSAC might fit itself to an interesting bunch
of outliers.

Vision Workbench’s implementation can be found in <vw/Math/RANSAC.h>. RandomSampleConsensus
expects 3 inputs during it’s construction. It requires a fitting functor that describes the type of
transform matrix used for fitting. It also needs an error metric functor. For the case of inter-
est points, InterestPointErrorMetric() should do the job. Finally, an integer describing the
inlier threshold is required that defines the greatest error allowed during fitting. An example of
construction is below.

vw::math::RandomSampleConsensus<math::SimilarityFittingFunctor,
math::InterestPointErrorMetric > ransac(
vw::math::SimilarityFittingFunctor(),
vw::math::InterestPointErrorMetric(), inlier_threshold);

RandomSampleConsensus is operated via an overloaded operator(). It expects a container
of Vector3s. Interest Point module provides a helpful tool for converting to Vector3 from a
std::vector of InterestPoints called iplist to vectorlist. Finally the overloaded operator()
returns it’s final transform matrix result that was used to select it’s inliers, this can be stored for
later image transform operations if desired. RandomSampleConsensus does not return a new list of
inliers, instead it returns the index locations of the inliers. It is left up to the user to repackage the
interest points to have only inliers. An example of operations is below.

std::vector<Vector3> ransac_ip1 = iplist_to_vectorlist(matched_ip1);
std::vector<Vector3> ransac_ip2 = iplist_to_vectorlist(matched_ip2);

Matrix<double> H(ransac(ransac_ip1,ransac_ip2));
std::vector<int> indices = ransac.inlier_indices(H,ransac_ip1,ransac_ip2);

Lastly, below is a listing of fitting functors that are available in <vw/Math/Geometry.h>.

Functor Description

HomographyFittingFunctor() 8 DOF. Also known as Projective matrix.
AffineFittingFunctor() 6 DOF. Handles rotation, translation, scaling, and skewing.

SimilarityFittingFunctor() 4 DOF. Handles rotation, translation, and scaling.
TranslationRotationFittingFunctor() 3 DOF. Also known as Euclidean matrix.

Table 11.1: Fitting functors defined in <vw/Math/Geometry.h>.

11.8. PRE-BUILT TOOLS 99

11.8 Pre-built Tools

To further help the introduction to the use of interest points, VisionWorkbench supplies two utility
programs for working with interest points. Ipfind and Ipmatch can be found built in VisionWork-
bench’s build path and the source code is available in <vw/tools/> .

Figure 11.1: Example debug image from Ipmatch.

The above is an example of a result that can be created with Ipfind and Ipmatch. Here are
the commands used to create it.

ipfind left.png right.png
ipmatch left.png right.png -r homography -d

100 CHAPTER 11. INTEREST POINT MODULE

Bibliography

[1] Harris, Chris, and Mike Stephens, “A Combined Corner and Edge Detector,” Proc. 4th Alvey
Vision Conf., Manchester, pp. 147-151, 1988.

[2] Lindeberg, Tony, “Feature Detection with Automatic Scale Selection,” Int. J. of Computer
Vision, Vol. 30, number 2, 1998.

[3] Lowe, David G., “Distinctive Image Features from Scale-Invariant Keypoints,” Int. J. of Com-
puter Vision, 2004.

101

102 BIBLIOGRAPHY

Chapter 12

Stereo Module

Stereo module’s focus is finding a dense correlation between two images taken of the same object
from different locations. Dense correlation means that every pixel in the first image has been
correctly matched to a pixel in the second image.

This dense matching is useful for recreating an ability every human has and that is stereo vision.
Using Camera Models discussed in Camera Module and using a dense correlation solved for in this
module, a 3D measurement can be created for every pixel. This has use in rover navigation, as it
allows for the land ahead to measured for steepness and roughness of terrain. It can also be used
for the construction topographical maps created from satellite imagery that allows for measurement
of every mountain, canyon and crater.

The following chapter is order mostly in the fashion that 3D models are created. We’ll start
with a discussion of the storage format for a dense correlation called a disparity map. Then we’ll
cover solving for a rough integer estimate of a disparity map in Stereo Correlation. Next is finding
the floating point solution of that disparity map call Subpixel Refinement. Finally we’ll discuss the
code that converts all of this data into 3D measurement with StereoView. We’ll also point you to
a demo tool that uses the discussed code.

12.1 Disparity Maps

As mentioned before a disparity map is the data structure that we use to store the solution of the
dense correlation. Simply it’s just an ImageView<PixelMask<Vector2f> >. Disparity Maps are
always associated with a left and a right image. Given a IL(x, y) in the left image, it’s correspond
index in the right image is found with IlLx, y) + D(IL(x, y)) = IR(x, y), where D is the disparity
map. Pixel Mask is used to keep track of failures that is usually caused by an unstable solution
or saturation of the input image (like a shadow or highlights). Figure 12.1 is an example of what
a typical disparity map looks like created from images that were aligned before feeding to the
correlate tool.

The header file <vw/Stereo/DisparityMap.h> provides a collection of useful tools for working
with and modifying disparities. Those functions are listed in Table 12.1. Tasks that are not provided
in the table are often possible with the generic routines for working with PixelMasks. For those
abilities take look back at Table 4.11.

Of the above functions, transform disparities is of particular interest. Before attempting
to correlate to images it is best to do a rough align for the images (like making sure both im-
ages are upright). A transform can be solved for with interest points and then applied to the
right image. After solving for the disparity map between the left and the transform right image,

103

104 CHAPTER 12. STEREO MODULE

(a) Left Image (b) Right Image

(c) Disparity Ch:0 Horizontal offset

(d) Disparity Ch:1 Vertical offset

Figure 12.1: Example of a Disparity Map created from pictures of a Sun Chip.

12.2. STEREO CORRELATION 105

Function Description

get disparity range(img) Returns a bounding box with a min & max describing
the value ranges of the disparity map

missing pixel image(img) Creates a new RGB image describing showing good pixel
locations

disparity mask(disparity, Lmask,
Rmask)

Creates a new disparity map this valid only where the
disparity links are valid in both the Left and Right im-
ages. Lmask & Rmask are uint8 images where 255 is valid.

disparity range make(disparity,
min, max)

Invalidates pixel locations in a disparity map where the
values exceed the values of min & max.

remove outliers(disparity,
half h kern, half v kern,
p threshold, rej threshold)

An erosion like method to take out high frequency
changes in the disparity map and label them as invalid.

clean up(disparity, half h kern,
half v kern)

Applies remove outliers twice with second application
targeting single pixel outliers

std dev image(disparity, kern w,
kern h)

Remove pixels from the disparity map that correspond
to low contrast pixels

transform disparities(disparity,
trans)

Applies a transform tans to a disparity map

Table 12.1: Functions provided for working with Disparity Maps.

transform disparities can be applied to the disparity map with the inverse transform. Making
the disparity map correlate between the original left and right images. This step of aligning the im-
ages before processing is sometimes called rectification and it can play a big part in the performance
of stereo processing.

12.2 Stereo Correlation

In this section we’ll cover the techniques and the code to solve for a disparity map with integer
precision. First we’ll start out with the general idea of correlation. Then we’ll break out in sections
with ways on how to speed of the process.

Correlation again is solving for a given point in the left image’s corresponding point in the right
image. This is performed with template matching.

Template matching is basically taking a crop of the image (called a kernel) around a point in
the left image and then trying to find a similar point in the right image. A search range is defined
for the right image and a kernel is slid across the entire range. To determine if a kernel position
in the right image corresponds with the kernel in the left image, a cost function is used. Normally
we work with the sum of absolute differences between the kernels, meaning that a low value is high
correlation and a high value means those kernels just don’t match. In our code we call this simply
absolute difference. There are other cost functions as well, squared difference and normalized cross
correlation. Yet all of them still boil down to per pixel difference being calculated between the 2
kernels.

Stereo Module does the task of template matching most plainly in the ReferenceCorrelator
found in <vw/Stereo/ReferenceCorrelator.h>. Yet this is not recommended for general use, in-
stead an better interface is provided called CorrelatorView found in <vw/Stereo/CorrelatorView.h>.

106 CHAPTER 12. STEREO MODULE

!"#$%&'()" *&)+$%(,&)-".%&'()"

!"#$%&!"'()*"

("&+,-'+&./"

#&!,-"0'!"#$%&!"

(!&+!)./'$1).!

Figure 12.2: Template matching example

Here’s an example for implementing it.

CorrelatorView<PixelGray<float>,vw::uint8,SlogStereoPreprocessingFilter>
corr_view(left_disk_image, right_disk_image, left_mask, right_mask,

SlogStereoPreprocessingFilter(1.5));
corr_view.set_search_range(search_range);
corr_view.set_kernel_size(Vector2i(25,25));
corr_view.set_correlator_options(1, ABS_DIFF_CORRELATOR);

// Begin processing
ImageView<PixelMask<Vector2f> > disparity_map = corr_view;

That may seem like a lot of properties to set but don’t let it frighten you away. The original
inputs are the 2 input images, 2 mask images, and a preprocessing filter. Mask images are simply
vw::uint8 images that are white where an image is valid. This is useful for masking off objects
that are known to cause problems before hand like shadows, dust, or a certain someone who was
accidentally touching the lens during the shot. The preprocessing filter options are defined in
<vw/Stereo/Correlate.h>. The LoG filters are useful for making the correlator light invariant as
it only see edges after it is applied. LoG filters are also a recommended filter for when trying out.
Blur filter is recommended for only when working the normalized cross correlation cost function in
template matching.

Function Description

SlogStereoPreprocessingFilter(arg) Sign of Laplacian of the Gaussian filter. Allows for effi-
cient XOR comparisons. arg is the gaussian sigma size.

LogStereoPreprocessingFilter(arg) Laplacian of Gaussian filter. arg is the gaussian sigma
size.

BlurStereoPreprocessingFilter(arg) Gaussian blur. arg is the gaussian sigma size.
NullStereoPreprocessingFilter() No preprocessing.

Table 12.2: Built-in preprocessing filter options.

One the other lines we set the search range with a bounding box. Where origin of the bounding
box is the starting search location in the right image. Kernel size is the same as the template

12.2. STEREO CORRELATION 107

window’s size. Finally the correlator options sets kernel size for an additional option blur that
is applied internally and it sets the cost function used in template matching. Table 12.3 has the
available options for cost functions.

Enumerator Description

ABS_DIFF_CORRELATOR Use the sum of absolute differences between paired ker-
nels

SQR_DIFF_CORRELATOR Use the sum of squared differences between paired kernels
NORM_XCORR_CORRELATOR Normalized cross correlation cost function.

Table 12.3: Correlator cost function options.

This process of template matching is repeated for every pixel in the left image against a search
range in the right image. It should be obvious why this is a CPU intensive process. Yet there are
methods for doing template matching efficiently and they are using a box filter and by implementing
a pyramid method to processing. The following subsections cover those improvements, but it’s not
required reading as CorrelatorView implements them on default.

12.2.1 Optimized Correlator

The OptimizedCorrelator employs a boxfilter-like accumulator to significantly speed up the template
matching process by cutting out redundant calculations (See figure 12.3).

Its output should be identical to the ReferenceCorrelator, which does not attempt to optimize
the template matching process in any way. (This makes it so slow it should only be used for testing
purposes)

!"#"

!"##$%$&'$(")*+$

$%&'()*'&+,%

-./0+,*1.2

Figure 12.3: Box filter Optimization

12.2.2 Pyramid-based Search Refinement

Pyramid-based searches are pretty straight forward. Our first step is producing a gaussian pyramid
of the input images. This means repeatedly blurring the image a small amount and then subsampling
by 2. The highest level of the pyramid is the smallest image as it has been subsampled the most.
The top level is where we start our template matching.

108 CHAPTER 12. STEREO MODULE

!"#$%&'"()*+", -+./$%&'"()*+",

!"#$%&'()$*"+&%,-,%!")./&'()$*"+&%,-,%

Figure 12.4: Pyramid-based search refinement

From the top level our search range for the kernel has been reduced greatly so it’s processing
time is very short. The disparity map created with the reduced imagery is then used as a seed for
the next lower level of the pyramid. This is wonderful as the previous results from a higher level
will have the template window searching roughly in the correct area and that means the search
region is kept relatively small. Using the pyramid search, each level is used as a seed for the next
lowest level until the bottom is reached. The result for the lowest level is the disparity map for the
original resolution imagery.

12.3 Subpixel Refinement

After disparity image is created with CorrelatorView, it is very coarse and exhibits what looks
like stair steps in the 3D model. This is because CorrelatorView has solved for the disparity using
only whole numbers. Subpixel Refinement further polishes the disparity map into floating point
precision. This additional step can be accessed can be found in <vw/Stereo/SubpixelView.h>.

disparity_map = SubpixelView<LogStereoPreprocessingFilter>(disparity_map_integer,
left_image, right_image,
25, 25, // Kernel size
true, true, // Do H V subpixel
0, // Subpixel mode
LogStereoPreprocessingFilter(1.5),
false); // Verbose option

Above is an example of code using SubpixelView. The first few arguments should be pretty
straight forward. It’s the disparity map created from CorrelatorView and then the left and right
original images. The next two numbers are the kernel size to be used, these do not need to be the
same as what was used in integer correlation. After that are two boolean conditionals that turn
on horizontal and vertical subpixel. Normally both of those values should be true. Yet for some
applications where speed is important, subpixel is only turned on for one direction.

The last three are self explanatory except Subpixel mode. Stereo module currently has 4 different
sub pixel refinement algorithms and with each increment they have better quality but at the cost
of speed. Mode 0 is parabola fitting and the fastest. It discussed in the next subsection. Modes 1-3
are forms of affine kernel algorithms and are discussed in the subsection 12.3.2. Of these modes, it

12.4. POINT CLOUDS 109

is suggested starting out with Mode 0 and then when time is not important jump directly to using
Mode 3.

Mode Name Description

0 No Subpixel Disable subpixel correlation
1 Parabola Subpixel Simplest and fastest subpixel mode.
2 Bayes EM Affine Subpixel Affine with estimated parameters for gaussian

weighted window
3 Experimental Subpixel Affine with estimated parameters for gamma and

gaussian weighted windows that correspond to in-
lier and outlier models

Table 12.4: Available Subpixel modes.

12.3.1 Parabola Fitting

The parabola subpixel mode estimates the subpixel disparity offset by fitting a paraboloid to the
template matching scores of the 8 pixels around the integer disparity estimate. The location of the
minimum of this surface is used as the subpixel offset.

Although this is the fastest subpixel mode, it exhibits an artifact known as ”pixel-locking”: the
subpixel offsets tend to fall near the integer disparity estimates. This causes stair-step like patterns
on surfaces that should otherwise be smooth. To avoid this problem, use the affine-adaptive subpixel
mode (Section 12.3.2).

12.3.2 Affine-adaptive Subpixel Refinement

Text

!"#$%&'()" *&)+$%(,&)-".%&'()"

!"#$%&"'(") *##+("%&"'(")

Figure 12.5: Affine refinement

Text

12.4 Point Clouds

12.5 Command Line Tool

Vision Workbench only comes with one tool that uses the Stereo Module. That is correlate which
can be read up in the Tools Chapter in Section 13.2. That tool is only a demo of things possible

110 CHAPTER 12. STEREO MODULE

and was used to create the imagery in this chapter. For a more extreme example of what can be
done with the stereo module, we encourage you to check out the Ames Stereo Pipeline.

Bibliography

111

112 BIBLIOGRAPHY

Chapter 13

Tools

VisionWorkbench has various tools that are handy for working with graphics. The tools can be
found in the VisionWorkbench/src/vw/tools folder.

13.1 colormap

The colormap tool visualizes the data encoded in a DEM by reading in a DEM and outputting a
corresponding color-coded height image. The colors run from blue for the lowest height value to
red for the highest height value. To adjust the image colors, use flags --min and --max to set the
highest and lowest values on the blue-to-red scale. For example, suppose firstDEM.tif has heights
in [0,100] and secondDEM.tif has heights in [0,120]. To visualize firstDEM.tif using the same
color scale as secondDEM.tif, run colormap --max 120 firstDEM.tif.

Other command-line options for colormap are listed in Table 13.1.

Table 13.1: Command-line options for colormap

Option Description

--help Display a help message
--input-file arg Explicitly specify the input file
-s [--shaded-relief-file] arg Specify a shaded relief image (grayscale) to apply to the

colorized image
-o [--output-file] arg Specify the output file
--nodata-value arg Remap the DEM default value to the min altitude value
--min arg Minimum height of the color map
--max arg Maximum height of the color map
--verbose Verbose output

13.2 correlate

The correlate tools is mostly a demo for the Stereo Module (Chapter 12) yet that does not nec-
essarily make it boring. It allows for playing around with settings provided in the CorrelateView.
The user must specify 2 images taken of the same object (preferably aligned prior with a match
file). This will then produce 2 output images that represent the horizontal and vertical disparities
between the images. Again the Stereo Module demos results that can be created with correlate

113

114 CHAPTER 13. TOOLS

in Figure 12.1.
All commands to correlate must be explict (as there are no positional inputs). An example of

using the tool is given below.

correlate --slog 1.5 --left DSC00623.JPG --right DSC00625.JPG
--xkernel 25 --ykernel 25 -xrange 100 -yrange 100 --pyramid

Table 13.2: Command-line options for correlate

Option Description

--help Display this help message
--left arg Explicitly specify the ’left’ input file
--right arg Explicitly specify the ’right’ input file
--slog arg (=1) Apply SLoG filter with the given sigma, or 0 to disable
--log arg (=0) Apply LoG filter with the given sigma, or 0 to disable
--xoffset arg (=0) Overall horizontal offset between images
--yoffset arg (=0) Overall vertical offset between images
--xrange arg (=5) Allowed range of horizontal disparity
--yrange arg (=5) Allowed range of vertical disparity
--xkernel arg (=5) Horizontal correlation kernel size
--ykernel arg (=5) Vertical correlation kernel size
--lrthresh arg (=1) Left/right correspondence threshold
--csthresh arg (=1) Correlation score rejection threshold (1.0 is Off – 2.0 is

Aggressive outlier rejection
--cost-blur arg (=1) Kernel size for blurring the cost image
--correlator-type arg (=0) 0 - Abs diff; 1 = Sq Diff; 2 - NormXCorr
--hsubpix Enable horizontal sub-pixel correlation
--vsubpix Enable vertical sub-pixel correlation
--affine-subpix Enable affine adaptive sub-pixel correlation (slower, but

more accurate)
--reference Use the slower, simpler reference correlator
--pyramid Use the pyramid based correlator
--bitimage Force the use of the optimized bit-image correlator
--nonbitimage Force the use of the slower, non bit-image optimized

correlator

13.3 hillshade

An alternative visualization of the DEM data may be desired. For this, the hillshade tool reads
in a DEM and outputs an image of that DEM as though it were a three-dimensional surface, with
every pixel shaded as though it were illuminated by a light from a specified location.

Table 13.3: Command-line options for hillshade

Option Description

--help Display a help message

13.5. GEOREF 115

--input-file arg Explicitly specify the input file
-o [--output-file] arg Specify the output file
-a [--azimuth] arg (=0) Sets the direction tha the light source is coming from (in

degrees). Zero degrees is to the right, with positive degree
counter-clockwise.

-e [--elevation] arg (=45) Set the elevation of the light source (in degrees)
-s [--scale] arg (=0) Set the scale of a pixel (in the same units as the DTM height

values
--nodata-value arg Remap the DEM default value to the min altitude value
--blur arg Pre-blur the DEM with the specified sigma

13.4 geoblend

geoblend merges multiple DEMs into one large DEM. By default, it blends the DEMs so that the
output is smooth at the boundaries. Disable this feature using the --draft flag. Other options are
listed in Table 13.4.

Table 13.4: Command-line options for geoblend

Option Description

--help Display a help message
-o [--mosaic-name] arg (=mosaic) Specify base output directory
-t [--output-file-type] arg (=tif) Output file type
--tile-output Output the leaf tiles of a quadtree, instead of a

single blended image.
--tiled-tiff arg (=0) Output a tiled TIFF image, with given tile size (0

disables, TIFF only)
--patch-size arg (=256) Patch size for tiled output, in pixels
--patch-overlap arg (=0) Patch overlap for tiled output, in pixels
--cache arg (=1024) Cache size, in megabytes
--draft Draft mode (no blending)
--ignore-alpha Ignore the alpha channel of the input images, and

don’t write an alpha channel in output.
--nodata-value arg Pixel value to use for nodata in input and output

(when there’s no alpha channel)
--channel-type arg Images’ channel type. One of [uint8, uint16, int16,

float].
--verbose Verbose output

13.5 georef

The georef tool lets you specify the geographical coordinates and projection method for an image
taken of the surface of a planet.

Table 13.5: Command-line options for georef

116 CHAPTER 13. TOOLS

Option Description

General Options
-o [--output-file] arg (=output.tif) Specify the base output filename
-q [--quiet] Quiet output
-v [--verbose] Verbose output
--cache arg (=1024) Cache size, in megabytes
--help Display a help message
Projection Options
--copy arg Copy the projection from the given file
--tfw arg Create a .tfw sidecar file with the given filename

rather than a full copy of the image file
--north arg The northernmost latitude in degrees
--south arg The southernmost latitude in degrees
--east arg The easternmost longitude in degrees
--west arg The westernmost longitude in degrees
--sinusoidal Assume a sinusoidal projection
--mercator Assume a Mercator projection
--transverse-mercator Assume a transverse Mercator projection
--orthographic Assume an orthographic projection
--stereographic Assume a stereographic projection
--lambert-azimuthal Assume a Lambert azimuthal projection
--utm arg Assume UTM projection with the given zone
--proj-lat arg The center of projection latitude (if applicable)
--proj-lon arg The center of projection longitude (if applica-

ble)
--proj-scale arg The projection scale (if applicable)
--nudge-x arg Nudge the image, in projected coordinates
--nudge-y arg Nudge the image, in projected coordinates
--pixel-as-point Encode that the pixel location (0,0) is the cen-

ter of the upper left hand pixel (the default,
if you specify nothing, is to set the upper left
hand corner of the upper left pixel as (0,0) (i.e.
PixelAsArea).

13.6 image2qtree

image2qtree turns a georeferenced image (or images) into a quadtree with geographical metadata.
For example, it can output a kml file for viewing in Google Earth.

Table 13.6: Command-line options for image2qtree

Option Description

General Options
-o [--output-name] arg Specify the base output directory

Continued on next page

13.6. IMAGE2QTREE 117

Table 13.6 – continued from previous page
-q [--quiet] Quiet output
-v [--verbose] Verbose output
--cache arg (=1024) Cache size, in megabytes
--help Display a help message
Input Options
--force-wgs84 Use WGS84 as the input images’ geographic coor-

dinate systems, even if they’re not (old behavior)
--pixel-scale arg (=1) Scale factor to apply to pixels
--pixel-offset arg (=0) Offset to apply to pixels
--normalize Normalize input images so that their full dynamic

range falls in between [0,255]
Output Options
-m [--output-metadata] arg (=none) Specify the output metadata type. One of [kml,

tms, uniview, gmap, celestia, none]
--file-type arg (=png) Output file type
--channel-type arg (=uint8) Output (and input) channel type. One of [uint8,

uint16, int16, float]
--module-name arg (=marsds) The module where the output will be placed. Ex:

marsds for Uniview, or Sol/Mars for Celestia
--terrain Outputs image files suitable for a Uniview terrain

view. Implies output format as PNG, channel type
uint16. Uniview only

--jpeg-quality arg (=0.75) JPEG quality factor (0.0 to 1.0)
--png-compression arg (=3) PNG compression level (0 to 9)
--palette-file arg Apply a palette from the given file
--palette-scale arg Apply a scale factor before applying the palette
--palette-offset arg Apply an offset before applying the palette
--tile-size arg (=256) Tile size, in pixels
--max-lod-pixels arg (=1024) Max LoD in pixels, or -1 for none (kml only)
--draw-order-offset arg (=0) Offset for the ¡drawOrder¿ tag for this overlay (kml

only)
--composite-multiband Composite images using multi-band blending
--aspect-ratio arg (=1) Pixel aspect ratio (for polar overlays; should be a

power of two)
Projection Options
--north arg The northernmost latitude in degrees
--south arg The southernmost latitude in degrees
--east arg The easternmost longitude in degrees
--west arg The westernmost longitude in degrees
--force-wgs84 Assume the input images’ geographic coordinate

systems are WGS84, even if they’re not (old be-
havior)

--sinusoidal Assume a sinusoidal projection
--mercator Assume a Mercator projection

Continued on next page

118 CHAPTER 13. TOOLS

Table 13.6 – continued from previous page
--transverse-mercator Assume a transverse Mercator projection
--orthographic Assume an orthographic projection
--stereographic Assume a stereographic projection
--lambert-azimuthal Assume a Lambert azimuthal projection
--lambert-conformal-conic Assume a Lambert Conformal Conic projection
--utm arg Assume UTM projection with the given zone
--proj-lat arg The center of projection latitude (if applicable)
--proj-lon arg The center of projection longitude (if applicable)
--proj-scale arg The projection scale (if applicable)
--std-parallel1 arg Standard parallels for Lambert Conformal Conic

projection
--std-parallel2 arg Standard parallels for Lambert Conformal Conic

projection
--nudge-x arg Nudge the image, in projected coordinates
--nudge-y arg Nudge the image, in projected coordinates

13.7 ipfind

The ipfind tool processes images for interest points. Interest points are features with in an image
that can be reliably located across multiple images. ipfind is a tool that is best paired with another
tool, ipmatch, described in the next Section 13.8.

The --interest-operator option allows for the user to change the algorithm used to detect
interest points. [LoG] is the simplest and also the slowest, but is often pretty reliable. All method
work to some extent by identify points where the image gradients all point inwardly as on a hill.
They also identify the polar opposite, all gradients pointing away.

The --descriptor-genetator option allows for the user to change the algorithm use to describe
an interest point. Interest points are described so that they may have a unique identity so that they
maybe located in different images. [patch] is the simplist descriptor, as it is actually the image
cropped around an interest point.

The result of ipfind is a special file called a Vision Workbench interest point file, and it has
the extension .vwip. The Interest Point Module (Chapter 11) contains routines that can open and
process such files.

Usage: ipfind [options] <image files>.... Other command line arguments are listed in
Table 13.7

Table 13.7: Command-line options for ipfind

Option Description

--help Display this table
--num-threads arg (=0) Set the number of theads for interest point de-

tection. Setting the num threads to zero causes
ipfind to use the visionworkbench default number
of threads.

-t [--tile-size] arg (=2048) Specify the tile size for processing interest points.
(Useful when working with large images).

13.8. IPMATCH 119

-l [--lowe] Save the interest points in an ASCII data format
that is compatible with the Lowe-SIFT toolchain.

-d [--debug-image] Write out debug images. This will highlight the
found interest points.

--interest-operator arg (=LoG) Choose an interest point metric from [LoG, Har-
ris].

--log-threshold arg (=0.03) Sets the threshold for the Laplacian of Gaussian
interest operator.

--harris-threshold arg (=1e-5) Sets the threshold for the Harris interest operator.
--max-points arg (=0) Sets the maximum number of interest points you

want returned. The most ı̈nterestingp̈oibts are se-
lected.

--single-scale Turn off scale-invariant interest point detection.
This option only searches for interest points in the
first octave of the scale space. This means faster
operation at a cost of quality.

--descriptor-generator arg (=patch) Choose a descriptor generator from [patch,pca].

13.8 ipmatch

The ipmatch tool processes images for interest points and matches them across images pair wise.
It exactly one step longer than the ipfind tool. This tool will load up the images and their
corresponding .vwip files and will run a matching algorithm looking for interest points with similair
descriptors. If a corresponding .vwip file can not be found for an input image, ipmatch will actually
call ipfind using the default settings to create a interest point file.

To filter out mismatched interest points, a RANSAC method is used. The fitting functor used
to determine if a match is valid or not can be selected via the --ransac-constraint option. The
options available are transform matrices with varing degrees of freedom.

The result of ipmatch is a special file called a Vision Workbench match file, and it has the
extension .vwip. The Interest Point Module (Chapter 11) contains routines that can open and
process such files.

Usage: ipmatch [options] <input file1> <input file2>. Other command line arguments
are listed in Table 13.8

Table 13.8: Command-line options for ipmatch

Option Description

--help Display this table
-t [--matcher-threshold] arg (=0.8) Threshold for the interest point matcher.
--non-kdtree Use an implementation of the interest matcher

that is not reliant o a KDTree algorithm.
-r [--ransac-constraint] arg (=similarity) RANSAC constraint type. Choose one of: [simi-

larity, homography, or none].
-i [--inlier-threshold] arg (=10) RANSAC inlier threshold. Increase the number to

allow more matches through that might agree with
RANSAC.

120 CHAPTER 13. TOOLS

-d [--debug-image] Write out debug images. This will highlight all the
matches found between two image.

13.9 slopemap

The slopemap tool takes in an image with geodetic coordinates and calculates the gradient angle
(steepness of slope) and aspect (direction of slope) in radians of each point on a DEM. The gradient
angle is calculated as the angle between the steepest slope and the horizon; the aspect is the angle
clockwise between the normal of the surface and a vector pointing to north, both projected onto
the tangent plane of the unelevated surface at that point.

Outputs include two georeferenced tifs encoding float values for aspect and gradient angle
(by default), as well as one RGB image displaying a colorized representation of both gradient angle
and aspect in which aspect is represented as hue and gradient angle is represented as a combina-
tion of saturation and value (needs flag). The output files are named according to the command
line argument output-prefix, with corresponding suffixes of _aspect.tif, _gradient.tif, and
_pretty.tif

The implementation calculates gradient angle and aspect by one of several methods: [horn,
fh, sa, planefit]. planefit refers to fitting a plane by least squares to all nine points of a 3x3
window around the point in question, weighted equally. The implementation involves using singular
value decomposition to solve a homogeneous linear system of equations and is slower than the other
methods.

horn, fh, and sa are modified versions of finite difference methods. They correspond to modified
versions of Horn’s method, Fleming and Hoffer’s method (also known as Ritter’s method as well as
the rook’s case), and Sharpnack and Akin’s method (also known as the queen’s case). They are all
variations of a similar method: approximate a west-east gradient and a south-north gradient and
subsequently calculate gradient angle and aspect from that. The modification to these algorithms
is that they do not require sampling from a square grid; when there is such a grid, the results are
the same as the unmodified versions. There is also a flag, spherical, that determines whether the
datum is interpreted to be spherical or flat (defaults to spherical), for an additional modification,
as the original algorithms assumed a flat sampling grid.

Usage: slopemap [options] <input file>. Other command line arguments are listed in Ta-
ble 13.9

Table 13.9: Command-line options for slopemap

Options Description

--help Display this help message
--input file arg Explcitly specify the input file
-o [--output-prefix] Output prefix
--no-aspect Do not output aspect ([output-prefix]_aspect.tif)
--no-gradient Do not output gradient ([output-prefix]_gradient.tif)
--pretty Output colored image ([output-prefix]_pretty.tif)
--algorithm arg (=moduneven) Choose an algorithm to calculate slope/aspect from

[horn, fh, sa, planefit]. Horn: Horn’s algorithm;
FH: Fleming & Hoffer’s (rook’s case); SA: Sharpnack & Akin’s
(queen’s case)

13.9. SLOPEMAP 121

--spherical arg (=1) Spherical/elliptical datum (recommended); otherwise, a flat
grid

122 CHAPTER 13. TOOLS

Chapter 14

Advanced Topics

Alas, this chapter is only partially written. Contact the authors for assistance with any of these
topics.

14.1 Lazy Evaluation: Working with Views

In the Vision Workbench, the ImageView<> class gives you access to raw, reference-counted pixel
data stored in RAM. However, this is just one instance of a more general View concept that is
central to the inner workings of the Vision Workbench library. In this section, we will discuss the
view concept in detail and show how you can leverage the full flexibility of VW by creating and
optimizing your own Views.

14.1.1 The View Concept

Consider what could happen when you chain three image processing operation together.

result = image1 + image2 + image3;
result = transpose(crop(image, x, y, 31, 31));

In order to perform this computation, the C++ compiler introduces a temporary image like
this:

ImageView<PixelGray<uint8> > tmp = image1 + image2;
result = tmp + image3;

And this:

ImageView<PixelGray<uint8> > tmp = crop(image, x, y, 31, 31);
result = transpose(tmp);

For simple operations such as addition, the introduction of a temporary image like this can
be terribly inneficient because it causes a large, image-sized block of memory to be allocated and
deallocated, and it requires a second pass over the data.

It is more efficient to allocate a single temporary PixelGray<uint8>; using it as you iterate
over the image computing the result one pixel at a time. This is how a hand-coded implementation
would be written by a cognisant programmer.

123

124 CHAPTER 14. ADVANCED TOPICS

Getting dimensions img.cols()
img.rows()
img.planes()

Accessing pixels img(col,row)
img(col,row,plane)

STL iterator ImageViewBase<...>::iterator
img.begin()
img.end()

Pixel iterator ImageViewBase<...>::pixel_iterator
img.origin()

Table 14.1: In the Vision Workbench, a View is any object that supplies the above methods and
inherits from ImageViewBase.

To avoid such enefficiencies, the Vision Workbench resorts to lazy evaluation; postponing oper-
ations on Views until the last possible moment before the result is needed. For example, applying
the addition operator to a pair of images does not immediately compute their sum. Instead, the +
operator returns an image sum object. This object is a View: an object that behave just like an
image, but represents a processed view of the underlying data (see Table 14.1). The actual compu-
tation of the sum is postponed until later when it is needed; for example when the user assigns it
to an ImageView<>, thereby causing the sum to be computed and stored in memory. This process
of finally evaluating one view into another is called rasterization.

Nested function calls produce nested View types, e.g. a sum object containing a sum object
plus an image, and so on. In this fashion, a series of image processing operations builds up a
View Tree that can represent an extensive chain of operations. The tree of operations are collapsed
into the inner loop when they are rasterized, allowing the compiler to efficiently allocate small
tempories. Rasterization is also an opportunity to make decisions about how to optimize the
image processing operations. For example, it may actually be more efficient in some cases to
introduce an entire temporary image in between two operations. A convolution operation followed
by another convolution operation is much more efficient when implemented in this manner. The
Vision Workbench rasterization engine does its best to make efficient decisions about when and how
to introduce temporaries when rasterizing a view tree. We’ll have more to say on this subject in
the sections below.

/// An image view for performing image correlation
template <class ImageT, class PreProcFuncT>
class CorrelatorView : public ImageViewBase<CorrelatorView<ImageT, PreProcFuncT> > {

typedef typename ImageT::pixel_type pixel_type

ImageViewRef<pixel_type> m_left_image, m_right_image;
PreProcFuncT m_preproc_func;

// Settings
BBox2i m_search_range;
Vector2i m_kernel_size;

public:

14.1. LAZY EVALUATION: WORKING WITH VIEWS 125

typedef typename ImageT::pixel_type pixel_type;
typedef pixel_type result_type;
typedef ProceduralPixelAccessor<CorrelatorView> pixel_accessor;

CorrelatorView(ImageViewBase<ImageT> const& left_image, ImageViewBase<ImageT> const& right_image,
PreProcFuncT const& preproc_func) :

m_left_image(left_image.impl()), m_right_image(right_image.impl()),
m_preproc_func(preproc_func) {

// Set some sensible default values
m_search_range = BBox2i(-50,-50,100,100);
m_kernel_size = Vector2i(24,24);

}

// Standard ImageView interface methods
inline int32 cols() const { return m_left_image.cols(); }
inline int32 rows() const { return m_left_image.rows(); }
inline int32 planes() const { return 1; }

inline pixel_accessor origin() const { return pixel_accessor(*this, 0, 0); }

inline pixel_type operator()(double i, double j, int32 p = 0) const {
vw_throw(NoImplErr() << "CorrelatorView::operator()(double i, double j, int32 p) has not been implemented.");
return pixel_type(); // Never reached

}

/// \cond INTERNAL
typedef CropView<ImageView<pixel_type> > prerasterize_type;
inline prerasterize_type prerasterize(BBox2i bbox) const {

// The area in the right image that we’ll be searching is
// determined by the bbox of the left image plus the search
// range.
BBox2i left_crop_bbox(bbox);
BBox2i right_crop_bbox(bbox.min() + m_search_range.min(),

bbox.max() + m_search_range.max());

// The correlator requires the images to be the same size. The
// search bbox will always be larger than the given left image
// bbox, so we just make the left bbox the same size as the
// right bbox.
left_crop_bbox.max() = left_crop_bbox.min() + Vector2i(right_crop_bbox.width(), right_crop_bbox.height());

// Finally, we must adjust both bounding boxes to account for
// the size of the kernel itself.
right_crop_bbox.min() -= Vector2i(m_kernel_size[0], m_kernel_size[1]);
right_crop_bbox.max() += Vector2i(m_kernel_size[0], m_kernel_size[1]);

126 CHAPTER 14. ADVANCED TOPICS

left_crop_bbox.min() -= Vector2i(m_kernel_size[0], m_kernel_size[1]);
left_crop_bbox.max() += Vector2i(m_kernel_size[0], m_kernel_size[1]);

// Log some helpful debugging info
vw_out(DebugMessage, "stereo") << "\t search_range: " << m_search_range << std::endl;
vw_out(DebugMessage, "stereo") << "\t left_crop_bbox: " << left_crop_bbox << std::endl;
vw_out(DebugMessage, "stereo") << "\tright_crop_bbox: " << right_crop_bbox << std::endl;

// We crop the images to the expanded bounding box and edge
// extend in case the new bbox extends past the image bounds.
ImageView<ImagePixelT> cropped_left_image = crop(edge_extend(m_left_image, ZeroEdgeExtension()), left_crop_bbox);
ImageView<ImagePixelT> cropped_right_image = crop(edge_extend(m_right_image, ZeroEdgeExtension()), right_crop_bbox);
ImageView<MaskPixelT> cropped_left_mask = crop(edge_extend(m_left_mask, ZeroEdgeExtension()), left_crop_bbox);
ImageView<MaskPixelT> cropped_right_mask = crop(edge_extend(m_right_mask, ZeroEdgeExtension()), right_crop_bbox);

// We have all of the settings adjusted. Now we just have to
// run the correlator.
vw::stereo::PyramidCorrelator correlator(BBox2(0,0,m_search_range.width(),m_search_range.height()),

Vector2i(m_kernel_size[0], m_kernel_size[1]),
m_cross_corr_threshold, m_corr_score_threshold,
m_cost_blur, m_correlator_type);

// For debugging: this saves the disparity map at various pyramid levels to disk.
if (m_debug_prefix.size() != 0) {
std::ostringstream ostr;
ostr << "-" << bbox.min().x() << "-" << bbox.max().x() << "_" << bbox.min().y() << "-" << bbox.max().y() << "-";
correlator.set_debug_mode(m_debug_prefix + ostr.str());

}

ImageView<pixel_type> disparity_map = correlator(cropped_left_image, cropped_right_image,
cropped_left_mask, cropped_right_mask,
m_preproc_func);

// Adjust the disparities to be relative to the uncropped
// image pixel locations
for (int v = 0; v < disparity_map.rows(); ++v)
for (int u = 0; u < disparity_map.cols(); ++u)
if (!disparity_map(u,v).missing()) {
disparity_map(u,v).h() += m_search_range.min().x();
disparity_map(u,v).v() += m_search_range.min().y();

}

// This may seem confusing, but we must crop here so that the
// good pixel data is placed into the coordinates specified by
// the bbox. This allows rasterize to touch those pixels
// using the coordinates inside the bbox. The pixels outside
// those coordinates are invalid, and they never get accessed.

14.2. WORKING WITH SHALLOW VIEWS 127

return CropView<ImageView<pixel_type> > (disparity_map, BBox2i(m_kernel_size[0]-bbox.min().x(),
m_kernel_size[1]-bbox.min().y(),
bbox.width(), bbox.height()));

}

template <class DestT> inline void rasterize(DestT const& dest, BBox2i bbox) const {
vw::rasterize(prerasterize(bbox), dest, bbox);

}
/// \endcond

};

14.2 Working with Shallow Views

14.3 Efficient Algorithms and pixel_accessor

14.4 Rasterization, Efficiency, and Tiled Computation

14.5 Generic Image Buffers

14.6 The File I/O System

14.7 Frequency-Domain Image Processing

128 CHAPTER 14. ADVANCED TOPICS

Chapter 15

A Vision Workbench Cookbook

This chapter provides simple bite-sized examples of how to use the Vision Workbench to perform a
range of common tasks.

129

130 CHAPTER 15. A VISION WORKBENCH COOKBOOK

15.1 Removing Camera Lens Distortion

All digital camera systems introduce some amount of distortion in the image. In some high-precision
cameras this distortion may be very small, while in other such as those with fisheye lenses it may
be very large. In either case removing camera lens distortion is the first step in many image
processing algorithms. The idea is to transform the image so that it looks as if it were taken with
a perfect pinhole camera. The resulting image is usually called either “linearized”, “undistorted”,
or “rectified”.

First you must create a camera model object, such as a PinholeModel or CAHVORModel, con-
taining a reasonably accurate model of your camera. (Computing one if you don’t have one already
is another topic altogether.) Then you can simply compute the linearized image like this.

result = linearize_camera_transform(image, camera_model);

This function is declared in the header <vw/Camera/CameraTransform.h> and located in the
vw::camera namespace. By default it uses the usual default edge extension and interpolation
modes, which may not be best depending on your needs. Often you will get better linearization
results by overriding those defaults using the optional arguments.

result = linearize_camera_transform(image, camera_model,
ConstantEdgeExtension(), BicubicInterpolation());

In many cases you would also like to know the linearized camera model that the linearized image
corresponds to. You can compute it directly using the linearize_camera function.

linearized_model = linearize_camera(camera_model, image.cols(), image.rows());

The linearization function needs to know the image dimensions so that it can select the linearized
model that best fits the distorted model over the given range. If you do use that function to compute
the linearized model in advance, or if you want to specify an alternate linearized camera model of
your own, then you should use the more general camera transformation function.

result = camera_transform(image, camera_model, linearized_model);

This function allows you to transform images between any two concentric camera models; undis-
torting an image is just a special case. You can again override the default edge extension and
interpolation settings if you wish.

Finally, if you require an even greater degree of control you can achieve it by manually creating
a CameraTransform object and appying it to the source image directly using the regular transform
function. This is in fact exactly what happens inside the convenience functions described above.
Here is a simple example, assuming the CAHVOR camera model.

CAHVORModel cahvor("my_camera_model.cahvor");
CAHVModel cahv = linearize_camera(cahvor, image.cols(), image.rows());
CameraTransform<CAHVORModel,CAHVModel> ctx(cahvor, cahv);
result = transform(image, ctx);

You might choose to do it this way if you want to compose the camera transform with another
transform in a single step for efficiency, for example.

	Introduction
	Getting Started
	Obtaining the Vision Workbench
	Building the Vision Workbench
	A Trivial Example Program
	Configuring the Build System

	Working with Images
	The ImageView Class
	The Basics
	The Standard Pixel Types
	Copying ImageViews
	ImageView as a STL-Compatible Container
	Image Planes

	Image File I/O
	Reading and Writing Image Files
	More Sophisticated File I/O

	Manipulating Images
	Simple Image Manipulation
	Image Algorithms

	Image Processing
	Image Filtering
	The Special-Purpose Filters
	Edge Extension Modes
	General Convolution Filtering

	Doing Math with Images
	Image Operators
	Mathematical Functions

	Vectors and Matrices
	Vectors and Vector Operations
	Matrices and Matrix Operations

	Transforming or Warping Images
	Transform Basics
	Creating a New Transform
	Advanced Techniques

	Pixel Mask

	Vision Workbench Type System
	The Scalar Types
	Type Deduction
	The Pixel Types

	Core Module
	Vision Workbench Exceptions
	The System Cache
	Example: Caching std::ofstream
	Performance Considerations and Debugging

	The System Log
	Writing Log Messages
	The Log Configuration File
	System Log API

	Camera Module
	The Pinhole Camera Model
	Perspective Projection

	The Camera Model Base Class
	Built-in Camera Models
	Pinhole Cameras
	Linescan Cameras

	Tools for Working With Camera Images
	Inverse Bayer Pattern Filtering
	Exif Exposure Data

	Mosaic Module
	ImageComposite and Multi-Band Blending
	ImageQuadTreeGenerator

	High Dynamic Range Module
	Merging Bracketed Exposures
	Converting LDR Images to an HDR Image
	The Camera Response Curves

	Tone Mapping
	Global Operators
	Local Operators

	Command Line Tools
	Other Resources

	Cartography Module
	Software Dependencies
	The GeoReference Class
	The Datum
	The Affine Transform
	Putting Things Together

	Geospatial Image Processing
	The GeoTransform Functor

	Georeferenced File I/O
	DiskImageResourceGDAL

	Interest Point Module
	Scale Space Methods
	Measuring Interest
	The Interest Point Detector Classes
	Flow of Data
	Generating Descriptors
	Matching
	RANSAC
	Pre-built Tools

	Stereo Module
	Disparity Maps
	Stereo Correlation
	Optimized Correlator
	Pyramid-based Search Refinement

	Subpixel Refinement
	Parabola Fitting
	Affine-adaptive Subpixel Refinement

	Point Clouds
	Command Line Tool

	Tools
	colormap
	correlate
	hillshade
	geoblend
	georef
	image2qtree
	ipfind
	ipmatch
	slopemap

	Advanced Topics
	Lazy Evaluation: Working with Views
	The View Concept

	Working with Shallow Views
	Efficient Algorithms and pixel`_accessor
	Rasterization, Efficiency, and Tiled Computation
	Generic Image Buffers
	The File I/O System
	Frequency-Domain Image Processing

	A Vision Workbench Cookbook
	Removing Camera Lens Distortion

